mirror of
https://github.com/danog/tgseclib.git
synced 2024-12-11 16:49:41 +01:00
520 lines
14 KiB
PHP
520 lines
14 KiB
PHP
<?php
|
|
|
|
/**
|
|
* Binary Finite Fields
|
|
*
|
|
* In a binary finite field numbers are actually polynomial equations. If you
|
|
* represent the number as a sequence of bits you get a sequence of 1's or 0's.
|
|
* These 1's or 0's represent the coefficients of the x**n, where n is the
|
|
* location of the given bit. When you add numbers over a binary finite field
|
|
* the result should have a coefficient of 1 or 0 as well. Hence addition
|
|
* and subtraction become the same operation as XOR.
|
|
* eg. 1 + 1 + 1 == 3 % 2 == 1 or 0 - 1 == -1 % 2 == 1
|
|
*
|
|
* PHP version 5 and 7
|
|
*
|
|
* @category Math
|
|
* @package BigInteger
|
|
* @author Jim Wigginton <terrafrost@php.net>
|
|
* @copyright 2017 Jim Wigginton
|
|
* @license http://www.opensource.org/licenses/mit-license.html MIT License
|
|
*/
|
|
|
|
namespace phpseclib\Math\BinaryField;
|
|
|
|
use phpseclib\Math\Common\FiniteField\Integer as Base;
|
|
use phpseclib\Math\BigInteger;
|
|
use phpseclib\Math\BinaryField;
|
|
use ParagonIE\ConstantTime\Hex;
|
|
|
|
/**
|
|
* Binary Finite Fields
|
|
*
|
|
* @package Math
|
|
* @author Jim Wigginton <terrafrost@php.net>
|
|
* @access public
|
|
*/
|
|
class Integer extends Base
|
|
{
|
|
/**
|
|
* Holds the BinaryField's value
|
|
*
|
|
* @var string
|
|
*/
|
|
protected $value;
|
|
|
|
/**
|
|
* Keeps track of current instance
|
|
*
|
|
* @var int
|
|
*/
|
|
protected $instanceID;
|
|
|
|
/**
|
|
* Holds the PrimeField's modulo
|
|
*
|
|
* @var string[]
|
|
*/
|
|
protected static $modulo;
|
|
|
|
/**
|
|
* Holds a pre-generated function to perform modulo reductions
|
|
*
|
|
* @var callable[]
|
|
*/
|
|
protected static $reduce;
|
|
|
|
/**
|
|
* Default constructor
|
|
*/
|
|
public function __construct($instanceID, $num = '')
|
|
{
|
|
$this->instanceID = $instanceID;
|
|
if (!strlen($num)) {
|
|
$this->value = '';
|
|
} else {
|
|
$reduce = static::$reduce[$instanceID];
|
|
$this->value = $reduce($num);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Set the modulo for a given instance
|
|
*/
|
|
public static function setModulo($instanceID, $modulo)
|
|
{
|
|
static::$modulo[$instanceID] = $modulo;
|
|
}
|
|
|
|
/**
|
|
* Set the modulo for a given instance
|
|
*/
|
|
public static function setRecurringModuloFunction($instanceID, callable $function)
|
|
{
|
|
static::$reduce[$instanceID] = $function;
|
|
}
|
|
|
|
/**
|
|
* Tests a parameter to see if it's of the right instance
|
|
*
|
|
* Throws an exception if the incorrect class is being utilized
|
|
*/
|
|
private static function checkInstance(self $x, self $y)
|
|
{
|
|
if ($x->instanceID != $y->instanceID) {
|
|
throw new \UnexpectedValueException('The instances of the two BinaryField\Integer objects do not match');
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Tests the equality of two numbers.
|
|
*
|
|
* @return bool
|
|
*/
|
|
public function equals(self $x)
|
|
{
|
|
static::checkInstance($this, $x);
|
|
|
|
return $this->value == $x->value;
|
|
}
|
|
|
|
/**
|
|
* Compares two numbers.
|
|
*
|
|
* @return int
|
|
*/
|
|
public function compare(self $x)
|
|
{
|
|
static::checkInstance($this, $x);
|
|
|
|
$a = $this->value;
|
|
$b = $x->value;
|
|
|
|
$length = max(strlen($a), strlen($b));
|
|
|
|
$a = str_pad($a, $length, "\0", STR_PAD_LEFT);
|
|
$b = str_pad($b, $length, "\0", STR_PAD_LEFT);
|
|
|
|
return strcmp($a, $b);
|
|
}
|
|
|
|
/**
|
|
* Returns the degree of the polynomial
|
|
*
|
|
* @param string $x
|
|
* @return int
|
|
*/
|
|
private static function deg($x)
|
|
{
|
|
$x = ltrim($x, "\0");
|
|
$xbit = decbin(ord($x[0]));
|
|
$xlen = $xbit == '0' ? 0 : strlen($xbit);
|
|
$len = strlen($x);
|
|
if (!$len) {
|
|
return -1;
|
|
}
|
|
return 8 * strlen($x) - 9 + $xlen;
|
|
}
|
|
|
|
/**
|
|
* Perform polynomial division
|
|
*
|
|
* @return string[]
|
|
* @link https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor#Euclidean_division
|
|
*/
|
|
private static function polynomialDivide($x, $y)
|
|
{
|
|
// in wikipedia's description of the algorithm, lc() is the leading coefficient. over a binary field that's
|
|
// always going to be 1.
|
|
|
|
$q = chr(0);
|
|
$d = static::deg($y);
|
|
$r = $x;
|
|
while (($degr = static::deg($r)) >= $d) {
|
|
$s = '1' . str_repeat('0', $degr - $d);
|
|
$s = BinaryField::base2ToBase256($s);
|
|
$length = max(strlen($s), strlen($q));
|
|
$q = !isset($q) ? $s :
|
|
str_pad($q, $length, "\0", STR_PAD_LEFT) ^
|
|
str_pad($s, $length, "\0", STR_PAD_LEFT);
|
|
$s = static::polynomialMultiply($s, $y);
|
|
$length = max(strlen($r), strlen($s));
|
|
$r = str_pad($r, $length, "\0", STR_PAD_LEFT) ^
|
|
str_pad($s, $length, "\0", STR_PAD_LEFT);
|
|
}
|
|
|
|
return [ltrim($q, "\0"), ltrim($r, "\0")];
|
|
}
|
|
|
|
/**
|
|
* Perform polynomial multiplation in the traditional way
|
|
*
|
|
* @return string
|
|
* @link https://en.wikipedia.org/wiki/Finite_field_arithmetic#Multiplication
|
|
*/
|
|
private static function regularPolynomialMultiply($x, $y)
|
|
{
|
|
$precomputed = [ltrim($x, "\0")];
|
|
$x = strrev(BinaryField::base256ToBase2($x));
|
|
$y = strrev(BinaryField::base256ToBase2($y));
|
|
if (strlen($x) == strlen($y)) {
|
|
$length = strlen($x);
|
|
} else {
|
|
$length = max(strlen($x), strlen($y));
|
|
$x = str_pad($x, $length, '0');
|
|
$y = str_pad($y, $length, '0');
|
|
}
|
|
$result = str_repeat('0', 2 * $length - 1);
|
|
$result = BinaryField::base2ToBase256($result);
|
|
$size = strlen($result);
|
|
$x = strrev($x);
|
|
|
|
// precompute left shift 1 through 7
|
|
for ($i = 1; $i < 8; $i++) {
|
|
$precomputed[$i] = BinaryField::base2ToBase256($x . str_repeat('0', $i));
|
|
}
|
|
for ($i = 0; $i < strlen($y); $i++) {
|
|
if ($y[$i] == '1') {
|
|
$temp = $precomputed[$i & 7] . str_repeat("\0", $i >> 3);
|
|
$result^= str_pad($temp, $size, "\0", STR_PAD_LEFT);
|
|
}
|
|
}
|
|
|
|
return $result;
|
|
}
|
|
|
|
/**
|
|
* Perform polynomial multiplation
|
|
*
|
|
* Uses karatsuba multiplication to reduce x-bit multiplications to a series of 32-bit multiplications
|
|
*
|
|
* @return string
|
|
* @link https://en.wikipedia.org/wiki/Karatsuba_algorithm
|
|
*/
|
|
private static function polynomialMultiply($x, $y)
|
|
{
|
|
if (strlen($x) == strlen($y)) {
|
|
$length = strlen($x);
|
|
} else {
|
|
$length = max(strlen($x), strlen($y));
|
|
$x = str_pad($x, $length, "\0", STR_PAD_LEFT);
|
|
$y = str_pad($y, $length, "\0", STR_PAD_LEFT);
|
|
}
|
|
|
|
switch (true) {
|
|
case PHP_INT_SIZE == 8 && $length <= 4:
|
|
return $length != 4 ?
|
|
self::subMultiply(str_pad($x, 4, "\0", STR_PAD_LEFT), str_pad($y, 4, "\0", STR_PAD_LEFT)) :
|
|
self::subMultiply($x, $y);
|
|
case PHP_INT_SIZE == 4 || $length > 32:
|
|
return self::regularPolynomialMultiply($x, $y);
|
|
}
|
|
|
|
$m = $length >> 1;
|
|
|
|
$x1 = substr($x, 0, -$m);
|
|
$x0 = substr($x, -$m);
|
|
$y1 = substr($y, 0, -$m);
|
|
$y0 = substr($y, -$m);
|
|
|
|
$z2 = self::polynomialMultiply($x1, $y1);
|
|
$z0 = self::polynomialMultiply($x0, $y0);
|
|
$z1 = self::polynomialMultiply(
|
|
self::subAdd2($x1, $x0),
|
|
self::subAdd2($y1, $y0)
|
|
);
|
|
|
|
$z1 = self::subAdd3($z1, $z2, $z0);
|
|
|
|
$xy = self::subAdd3(
|
|
$z2 . str_repeat("\0", 2 * $m),
|
|
$z1 . str_repeat("\0", $m),
|
|
$z0
|
|
);
|
|
|
|
return ltrim($xy, "\0");
|
|
}
|
|
|
|
/**
|
|
* Perform polynomial multiplication on 2x 32-bit numbers, returning
|
|
* a 64-bit number
|
|
*
|
|
* @param string $x
|
|
* @param string $y
|
|
* @return string
|
|
* @link https://www.bearssl.org/constanttime.html#ghash-for-gcm
|
|
*/
|
|
private static function subMultiply($x, $y)
|
|
{
|
|
$x = unpack('N', $x)[1];
|
|
$y = unpack('N', $y)[1];
|
|
|
|
$x0 = $x & 0x11111111;
|
|
$x1 = $x & 0x22222222;
|
|
$x2 = $x & 0x44444444;
|
|
$x3 = $x & 0x88888888;
|
|
|
|
$y0 = $y & 0x11111111;
|
|
$y1 = $y & 0x22222222;
|
|
$y2 = $y & 0x44444444;
|
|
$y3 = $y & 0x88888888;
|
|
|
|
$z0 = ($x0 * $y0) ^ ($x1 * $y3) ^ ($x2 * $y2) ^ ($x3 * $y1);
|
|
$z1 = ($x0 * $y1) ^ ($x1 * $y0) ^ ($x2 * $y3) ^ ($x3 * $y2);
|
|
$z2 = ($x0 * $y2) ^ ($x1 * $y1) ^ ($x2 * $y0) ^ ($x3 * $y3);
|
|
$z3 = ($x0 * $y3) ^ ($x1 * $y2) ^ ($x2 * $y1) ^ ($x3 * $y0);
|
|
|
|
$z0&= 0x1111111111111111;
|
|
$z1&= 0x2222222222222222;
|
|
$z2&= 0x4444444444444444;
|
|
$z3&= -8608480567731124088; // 0x8888888888888888 gets interpreted as a float
|
|
|
|
$z = $z0 | $z1 | $z2 | $z3;
|
|
|
|
return pack('J', $z);
|
|
}
|
|
|
|
/**
|
|
* Adds two numbers
|
|
*
|
|
* @param string $x
|
|
* @param string $y
|
|
* @return string
|
|
*/
|
|
private static function subAdd2($x, $y)
|
|
{
|
|
$length = max(strlen($x), strlen($y));
|
|
$x = str_pad($x, $length, "\0", STR_PAD_LEFT);
|
|
$y = str_pad($y, $length, "\0", STR_PAD_LEFT);
|
|
return $x ^ $y;
|
|
}
|
|
|
|
/**
|
|
* Adds three numbers
|
|
*
|
|
* @param string $x
|
|
* @param string $y
|
|
* @return string
|
|
*/
|
|
private static function subAdd3($x, $y, $z)
|
|
{
|
|
$length = max(strlen($x), strlen($y), strlen($z));
|
|
$x = str_pad($x, $length, "\0", STR_PAD_LEFT);
|
|
$y = str_pad($y, $length, "\0", STR_PAD_LEFT);
|
|
$z = str_pad($z, $length, "\0", STR_PAD_LEFT);
|
|
return $x ^ $y ^ $z;
|
|
}
|
|
|
|
/**
|
|
* Adds two BinaryFieldIntegers.
|
|
*
|
|
* @return static
|
|
*/
|
|
public function add(self $y)
|
|
{
|
|
static::checkInstance($this, $y);
|
|
|
|
$length = strlen(static::$modulo[$this->instanceID]);
|
|
|
|
$x = str_pad($this->value, $length, "\0", STR_PAD_LEFT);
|
|
$y = str_pad($y->value, $length, "\0", STR_PAD_LEFT);
|
|
|
|
return new static($this->instanceID, $x ^ $y);
|
|
}
|
|
|
|
/**
|
|
* Subtracts two BinaryFieldIntegers.
|
|
*
|
|
* @return static
|
|
*/
|
|
public function subtract(self $x)
|
|
{
|
|
return $this->add($x);
|
|
}
|
|
|
|
/**
|
|
* Multiplies two BinaryFieldIntegers.
|
|
*
|
|
* @return static
|
|
*/
|
|
public function multiply(self $y)
|
|
{
|
|
static::checkInstance($this, $y);
|
|
|
|
return new static($this->instanceID, static::polynomialMultiply($this->value, $y->value));
|
|
}
|
|
|
|
/**
|
|
* Returns the modular inverse of a BinaryFieldInteger
|
|
*
|
|
* @return static
|
|
*/
|
|
public function modInverse()
|
|
{
|
|
$remainder0 = static::$modulo[$this->instanceID];
|
|
$remainder1 = $this->value;
|
|
|
|
if ($remainder1 == '') {
|
|
return new static($this->instanceID);
|
|
}
|
|
|
|
$aux0 = "\0";
|
|
$aux1 = "\1";
|
|
while ($remainder1 != "\1") {
|
|
list($q, $r) = static::polynomialDivide($remainder0, $remainder1);
|
|
$remainder0 = $remainder1;
|
|
$remainder1 = $r;
|
|
// the auxiliary in row n is given by the sum of the auxiliary in
|
|
// row n-2 and the product of the quotient and the auxiliary in row
|
|
// n-1
|
|
$temp = static::polynomialMultiply($aux1, $q);
|
|
$aux = str_pad($aux0, strlen($temp), "\0", STR_PAD_LEFT) ^
|
|
str_pad($temp, strlen($aux0), "\0", STR_PAD_LEFT);
|
|
$aux0 = $aux1;
|
|
$aux1 = $aux;
|
|
}
|
|
|
|
$temp = new static($this->instanceID);
|
|
$temp->value = ltrim($aux1, "\0");
|
|
return $temp;
|
|
}
|
|
|
|
/**
|
|
* Divides two PrimeFieldIntegers.
|
|
*
|
|
* @return static
|
|
*/
|
|
public function divide(self $x)
|
|
{
|
|
static::checkInstance($this, $x);
|
|
|
|
$x = $x->modInverse();
|
|
return $this->multiply($x);
|
|
}
|
|
|
|
/**
|
|
* Negate
|
|
*
|
|
* A negative number can be written as 0-12. With modulos, 0 is the same thing as the modulo
|
|
* so 0-12 is the same thing as modulo-12
|
|
*
|
|
* @return object
|
|
*/
|
|
public function negate()
|
|
{
|
|
$x = str_pad($this->value, strlen(static::$modulo[$this->instanceID]), "\0", STR_PAD_LEFT);
|
|
|
|
return new static($this->instanceID, $x ^ static::$modulo[$this->instanceID]);
|
|
}
|
|
|
|
/**
|
|
* Returns the modulo
|
|
*
|
|
* @return integer
|
|
*/
|
|
public static function getModulo($instanceID)
|
|
{
|
|
return static::$modulo[$instanceID];
|
|
}
|
|
|
|
/**
|
|
* Converts an Integer to a byte string (eg. base-256).
|
|
*
|
|
* @return string
|
|
*/
|
|
public function toBytes()
|
|
{
|
|
return str_pad($this->value, strlen(static::$modulo[$this->instanceID]), "\0", STR_PAD_LEFT);
|
|
}
|
|
|
|
/**
|
|
* Converts an Integer to a hex string (eg. base-16).
|
|
*
|
|
* @return string
|
|
*/
|
|
public function toHex()
|
|
{
|
|
return Hex::encode($this->toBytes());
|
|
}
|
|
|
|
/**
|
|
* Converts an Integer to a bit string (eg. base-2).
|
|
*
|
|
* @return string
|
|
*/
|
|
public function toBits()
|
|
{
|
|
//return str_pad(BinaryField::base256ToBase2($this->value), strlen(static::$modulo[$this->instanceID]), '0', STR_PAD_LEFT);
|
|
return BinaryField::base256ToBase2($this->value);
|
|
}
|
|
|
|
/**
|
|
* Converts an Integer to a BigInteger
|
|
*
|
|
* @return string
|
|
*/
|
|
public function toBigInteger()
|
|
{
|
|
return new BigInteger($this->value, 256);
|
|
}
|
|
|
|
/**
|
|
* __toString() magic method
|
|
*
|
|
* @access public
|
|
*/
|
|
public function __toString()
|
|
{
|
|
return (string) $this->toBigInteger();
|
|
}
|
|
|
|
/**
|
|
* __debugInfo() magic method
|
|
*
|
|
* @access public
|
|
*/
|
|
public function __debugInfo()
|
|
{
|
|
return ['value' => $this->toHex()];
|
|
}
|
|
} |