mirror of
https://github.com/danog/tgseclib.git
synced 2025-01-07 05:08:19 +01:00
378 lines
9.7 KiB
PHP
378 lines
9.7 KiB
PHP
<?php
|
|
|
|
/**
|
|
* Curves over y^2 + x*y = x^3 + a*x^2 + b
|
|
*
|
|
* These are curves used in SEC 2 over prime fields: http://www.secg.org/SEC2-Ver-1.0.pdf
|
|
* The curve is a weierstrass curve with a[3] and a[2] set to 0.
|
|
*
|
|
* Uses Jacobian Coordinates for speed if able:
|
|
*
|
|
* https://en.wikipedia.org/wiki/Jacobian_curve
|
|
* https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
|
|
*
|
|
* PHP version 5 and 7
|
|
*
|
|
* @category Crypt
|
|
* @package EC
|
|
* @author Jim Wigginton <terrafrost@php.net>
|
|
* @copyright 2017 Jim Wigginton
|
|
* @license http://www.opensource.org/licenses/mit-license.html MIT License
|
|
* @link http://pear.php.net/package/Math_BigInteger
|
|
*/
|
|
|
|
namespace phpseclib\Crypt\EC\BaseCurves;
|
|
|
|
use phpseclib\Common\Functions\Strings;
|
|
use phpseclib\Math\BinaryField;
|
|
use phpseclib\Math\BigInteger;
|
|
use phpseclib\Math\BinaryField\Integer as BinaryInteger;
|
|
|
|
/**
|
|
* Curves over y^2 + x*y = x^3 + a*x^2 + b
|
|
*
|
|
* @package Binary
|
|
* @author Jim Wigginton <terrafrost@php.net>
|
|
* @access public
|
|
*/
|
|
class Binary extends Base
|
|
{
|
|
/**
|
|
* Binary Field Integer factory
|
|
*
|
|
* @var \phpseclib\Math\BinaryFields
|
|
*/
|
|
protected $factory;
|
|
|
|
/**
|
|
* Cofficient for x^1
|
|
*
|
|
* @var object
|
|
*/
|
|
protected $a;
|
|
|
|
/**
|
|
* Cofficient for x^0
|
|
*
|
|
* @var object
|
|
*/
|
|
protected $b;
|
|
|
|
/**
|
|
* Base Point
|
|
*
|
|
* @var object
|
|
*/
|
|
protected $p;
|
|
|
|
/**
|
|
* The number one over the specified finite field
|
|
*
|
|
* @var object
|
|
*/
|
|
protected $one;
|
|
|
|
/**
|
|
* The modulo
|
|
*
|
|
* @var BigInteger
|
|
*/
|
|
protected $modulo;
|
|
|
|
/**
|
|
* The Order
|
|
*
|
|
* @var BigInteger
|
|
*/
|
|
protected $order;
|
|
|
|
/**
|
|
* Sets the modulo
|
|
*/
|
|
public function setModulo(...$modulo)
|
|
{
|
|
$this->modulo = $modulo;
|
|
$this->factory = new BinaryField(...$modulo);
|
|
|
|
$this->one = $this->factory->newInteger("\1");
|
|
}
|
|
|
|
/**
|
|
* Set coefficients a and b
|
|
*
|
|
* @param string $a
|
|
* @param string $b
|
|
*/
|
|
public function setCoefficients($a, $b)
|
|
{
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
$this->a = $this->factory->newInteger(pack('H*', $a));
|
|
$this->b = $this->factory->newInteger(pack('H*', $b));
|
|
}
|
|
|
|
/**
|
|
* Set x and y coordinates for the base point
|
|
*
|
|
* @param string|BinaryInteger $x
|
|
* @param string|BinaryInteger $y
|
|
*/
|
|
public function setBasePoint($x, $y)
|
|
{
|
|
switch (true) {
|
|
case !is_string($x) && !$x instanceof BinaryInteger:
|
|
throw new \UnexpectedValueException('Argument 1 passed to Binary::setBasePoint() must be a string or an instance of BinaryField\Integer');
|
|
case !is_string($y) && !$y instanceof BinaryInteger:
|
|
throw new \UnexpectedValueException('Argument 2 passed to Binary::setBasePoint() must be a string or an instance of BinaryField\Integer');
|
|
}
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
$this->p = [
|
|
is_string($x) ? $this->factory->newInteger(pack('H*', $x)) : $x,
|
|
is_string($y) ? $this->factory->newInteger(pack('H*', $y)) : $y
|
|
];
|
|
}
|
|
|
|
/**
|
|
* Retrieve the base point as an array
|
|
*
|
|
* @return array
|
|
*/
|
|
public function getBasePoint()
|
|
{
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
/*
|
|
if (!isset($this->p)) {
|
|
throw new \RuntimeException('setBasePoint needs to be called before this method');
|
|
}
|
|
*/
|
|
return $this->p;
|
|
}
|
|
|
|
/**
|
|
* Adds two points on the curve
|
|
*
|
|
* @return FiniteField[]
|
|
*/
|
|
public function addPoint(array $p, array $q)
|
|
{
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
|
|
if (!count($p) || !count($q)) {
|
|
if (count($q)) {
|
|
return $q;
|
|
}
|
|
if (count($p)) {
|
|
return $p;
|
|
}
|
|
return [];
|
|
}
|
|
|
|
if (!isset($p[2]) || !isset($q[2])) {
|
|
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
|
|
}
|
|
|
|
if ($p[0]->equals($q[0])) {
|
|
return !$p[1]->equals($q[1]) ? [] : $this->doublePoint($p);
|
|
}
|
|
|
|
// formulas from http://hyperelliptic.org/EFD/g12o/auto-shortw-jacobian.html
|
|
|
|
list($x1, $y1, $z1) = $p;
|
|
list($x2, $y2, $z2) = $q;
|
|
|
|
$o1 = $z1->multiply($z1);
|
|
$b = $x2->multiply($o1);
|
|
|
|
if ($z2->equals($this->one)) {
|
|
$d = $y2->multiply($o1)->multiply($z1);
|
|
$e = $x1->add($b);
|
|
$f = $y1->add($d);
|
|
$z3 = $e->multiply($z1);
|
|
$h = $f->multiply($x2)->add($z3->multiply($y2));
|
|
$i = $f->add($z3);
|
|
$g = $z3->multiply($z3);
|
|
$p1 = $this->a->multiply($g);
|
|
$p2 = $f->multiply($i);
|
|
$p3 = $e->multiply($e)->multiply($e);
|
|
$x3 = $p1->add($p2)->add($p3);
|
|
$y3 = $i->multiply($x3)->add($g->multiply($h));
|
|
|
|
return [$x3, $y3, $z3];
|
|
}
|
|
|
|
$o2 = $z2->multiply($z2);
|
|
$a = $x1->multiply($o2);
|
|
$c = $y1->multiply($o2)->multiply($z2);
|
|
$d = $y2->multiply($o1)->multiply($z1);
|
|
$e = $a->add($b);
|
|
$f = $c->add($d);
|
|
$g = $e->multiply($z1);
|
|
$h = $f->multiply($x2)->add($g->multiply($y2));
|
|
$z3 = $g->multiply($z2);
|
|
$i = $f->add($z3);
|
|
$p1 = $this->a->multiply($z3->multiply($z3));
|
|
$p2 = $f->multiply($i);
|
|
$p3 = $e->multiply($e)->multiply($e);
|
|
$x3 = $p1->add($p2)->add($p3);
|
|
$y3 = $i->multiply($x3)->add($g->multiply($g)->multiply($h));
|
|
|
|
return [$x3, $y3, $z3];
|
|
}
|
|
|
|
/**
|
|
* Doubles a point on a curve
|
|
*
|
|
* @return FiniteField[]
|
|
*/
|
|
public function doublePoint(array $p)
|
|
{
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
|
|
if (!count($p)) {
|
|
return [];
|
|
}
|
|
|
|
if (!isset($p[2])) {
|
|
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
|
|
}
|
|
|
|
// formulas from http://hyperelliptic.org/EFD/g12o/auto-shortw-jacobian.html
|
|
|
|
list($x1, $y1, $z1) = $p;
|
|
|
|
$a = $x1->multiply($x1);
|
|
$b = $a->multiply($a);
|
|
|
|
if ($z1->equals($this->one)) {
|
|
$x3 = $b->add($this->b);
|
|
$z3 = clone $x1;
|
|
$p1 = $a->add($y1)->add($z3)->multiply($this->b);
|
|
$p2 = $a->add($y1)->multiply($b);
|
|
$y3 = $p1->add($p2);
|
|
|
|
return [$x3, $y3, $z3];
|
|
}
|
|
|
|
$c = $z1->multiply($z1);
|
|
$d = $c->multiply($c);
|
|
$x3 = $b->add($this->b->multiply($d->multiply($d)));
|
|
$z3 = $x1->multiply($c);
|
|
$p1 = $b->multiply($z3);
|
|
$p2 = $a->add($y1->multiply($z1))->add($z3)->multiply($x3);
|
|
$y3 = $p1->add($p2);
|
|
|
|
return [$x3, $y3, $z3];
|
|
}
|
|
|
|
/**
|
|
* Returns the X coordinate and the derived Y coordinate
|
|
*
|
|
* Not supported because it is covered by patents.
|
|
* Quoting https://www.openssl.org/docs/man1.1.0/apps/ecparam.html ,
|
|
*
|
|
* "Due to patent issues the compressed option is disabled by default for binary curves
|
|
* and can be enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at
|
|
* compile time."
|
|
*
|
|
* @return array
|
|
*/
|
|
public function derivePoint($m)
|
|
{
|
|
throw new \RuntimeException('Point compression on binary finite field elliptic curves is not supported');
|
|
}
|
|
|
|
/**
|
|
* Tests whether or not the x / y values satisfy the equation
|
|
*
|
|
* @return boolean
|
|
*/
|
|
public function verifyPoint(array $p)
|
|
{
|
|
list($x, $y) = $p;
|
|
$lhs = $y->multiply($y);
|
|
$lhs = $lhs->add($x->multiply($y));
|
|
$x2 = $x->multiply($x);
|
|
$x3 = $x2->multiply($x);
|
|
$rhs = $x3->add($this->a->multiply($x2))->add($this->b);
|
|
|
|
return $lhs->equals($rhs);
|
|
}
|
|
|
|
/**
|
|
* Returns the modulo
|
|
*
|
|
* @return \phpseclib\Math\BigInteger
|
|
*/
|
|
public function getModulo()
|
|
{
|
|
return $this->modulo;
|
|
}
|
|
|
|
/**
|
|
* Returns the a coefficient
|
|
*
|
|
* @return \phpseclib\Math\PrimeField\Integer
|
|
*/
|
|
public function getA()
|
|
{
|
|
return $this->a;
|
|
}
|
|
|
|
/**
|
|
* Returns the a coefficient
|
|
*
|
|
* @return \phpseclib\Math\PrimeField\Integer
|
|
*/
|
|
public function getB()
|
|
{
|
|
return $this->b;
|
|
}
|
|
|
|
/**
|
|
* Returns the affine point
|
|
*
|
|
* A Jacobian Coordinate is of the form (x, y, z).
|
|
* To convert a Jacobian Coordinate to an Affine Point
|
|
* you do (x / z^2, y / z^3)
|
|
*
|
|
* @return \phpseclib\Math\PrimeField\Integer[]
|
|
*/
|
|
public function convertToAffine(array $p)
|
|
{
|
|
if (!isset($p[2])) {
|
|
return $p;
|
|
}
|
|
list($x, $y, $z) = $p;
|
|
$z = $this->one->divide($z);
|
|
$z2 = $z->multiply($z);
|
|
return [
|
|
$x->multiply($z2),
|
|
$y->multiply($z2)->multiply($z)
|
|
];
|
|
}
|
|
|
|
/**
|
|
* Converts an affine point to a jacobian coordinate
|
|
*
|
|
* @return \phpseclib\Math\PrimeField\Integer[]
|
|
*/
|
|
public function convertToInternal(array $p)
|
|
{
|
|
if (isset($p[2])) {
|
|
return $p;
|
|
}
|
|
|
|
$p[2] = clone $this->one;
|
|
$p['fresh'] = true;
|
|
return $p;
|
|
}
|
|
} |