1
0
mirror of https://github.com/danog/tgseclib.git synced 2025-01-07 05:08:19 +01:00
tgseclib/phpseclib/Crypt/EC/BaseCurves/Montgomery.php
2019-08-08 22:38:42 -05:00

285 lines
7.4 KiB
PHP

<?php
/**
* Curves over y^2 = x^3 + a*x + x
*
* Technically, a Montgomery curve has a coefficient for y^2 but for Curve25519 and Curve448 that
* coefficient is 1.
*
* Curve25519 and Curve448 do not make use of the y coordinate, which makes it unsuitable for use
* with ECDSA / EdDSA. A few other differences between Curve25519 and Ed25519 are discussed at
* https://crypto.stackexchange.com/a/43058/4520
*
* More info:
*
* https://en.wikipedia.org/wiki/Montgomery_curve
*
* PHP version 5 and 7
*
* @category Crypt
* @package EC
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2019 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib\Crypt\EC\BaseCurves;
use phpseclib\Math\Common\FiniteField\Integer;
use phpseclib\Common\Functions\Strings;
use phpseclib\Math\PrimeField;
use phpseclib\Math\BigInteger;
use phpseclib\Crypt\EC\Curves\Curve25519;
use phpseclib\Math\PrimeField\Integer as PrimeInteger;
/**
* Curves over y^2 = x^3 + a*x + x
*
* @package EC
* @author Jim Wigginton <terrafrost@php.net>
* @access public
*/
class Montgomery extends Base
{
/**
* Prime Field Integer factory
*
* @var \phpseclib\Math\PrimeFields
*/
protected $factory;
/**
* Cofficient for x
*
* @var object
*/
protected $a;
/**
* Constant used for point doubling
*
* @var object
*/
protected $a24;
/**
* The Number Zero
*
* @var object
*/
protected $zero;
/**
* The Number One
*
* @var object
*/
protected $one;
/**
* Base Point
*
* @var object
*/
protected $p;
/**
* The modulo
*
* @var BigInteger
*/
protected $modulo;
/**
* The Order
*
* @var BigInteger
*/
protected $order;
/**
* Sets the modulo
*/
public function setModulo(BigInteger $modulo)
{
$this->modulo = $modulo;
$this->factory = new PrimeField($modulo);
$this->zero = $this->factory->newInteger(new BigInteger());
$this->one = $this->factory->newInteger(new BigInteger(1));
}
/**
* Set coefficients a
*/
public function setCoefficients(BigInteger $a)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->a = $this->factory->newInteger($a);
$two = $this->factory->newInteger(new BigInteger(2));
$four = $this->factory->newInteger(new BigInteger(4));
$this->a24 = $this->a->subtract($two)->divide($four);
}
/**
* Set x and y coordinates for the base point
*
* @param BigInteger|PrimeInteger $x
* @param BigInteger|PrimeInteger $y
* @return PrimeInteger[]
*/
public function setBasePoint($x, $y)
{
switch (true) {
case !$x instanceof BigInteger && !$x instanceof PrimeInteger:
throw new \UnexpectedValueException('Argument 1 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
case !$y instanceof BigInteger && !$y instanceof PrimeInteger:
throw new \UnexpectedValueException('Argument 2 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
}
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
$this->p = [
$x instanceof BigInteger ? $this->factory->newInteger($x) : $x,
$y instanceof BigInteger ? $this->factory->newInteger($y) : $y
];
}
/**
* Retrieve the base point as an array
*
* @return array
*/
public function getBasePoint()
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
/*
if (!isset($this->p)) {
throw new \RuntimeException('setBasePoint needs to be called before this method');
}
*/
return $this->p;
}
/**
* Doubles and adds a point on a curve
*
* See https://tools.ietf.org/html/draft-ietf-tls-curve25519-01#appendix-A.1.3
*
* @return FiniteField[][]
*/
private function doubleAndAddPoint(array $p, array $q, PrimeInteger $x1)
{
if (!isset($this->factory)) {
throw new \RuntimeException('setModulo needs to be called before this method');
}
if (!count($p) || !count($q)) {
return [];
}
if (!isset($p[1])) {
throw new \RuntimeException('Affine coordinates need to be manually converted to XZ coordinates');
}
list($x2, $z2) = $p;
list($x3, $z3) = $q;
$a = $x2->add($z2);
$aa = $a->multiply($a);
$b = $x2->subtract($z2);
$bb = $b->multiply($b);
$e = $aa->subtract($bb);
$c = $x3->add($z3);
$d = $x3->subtract($z3);
$da = $d->multiply($a);
$cb = $c->multiply($b);
$temp = $da->add($cb);
$x5 = $temp->multiply($temp);
$temp = $da->subtract($cb);
$z5 = $x1->multiply($temp->multiply($temp));
$x4 = $aa->multiply($bb);
$temp = static::class == Curve25519::class ? $bb : $aa;
$z4 = $e->multiply($temp->add($this->a24->multiply($e)));
return [
[$x4, $z4],
[$x5, $z5]
];
}
/**
* Multiply a point on the curve by a scalar
*
* Uses the montgomery ladder technique as described here:
*
* https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
* https://github.com/phpecc/phpecc/issues/16#issuecomment-59176772
*
* @return array
*/
public function multiplyPoint(array $p, Integer $d)
{
$p1 = [$this->one, $this->zero];
$alreadyInternal = isset($x[1]);
$p2 = $this->convertToInternal($p);
$x = $p[0];
$b = $d->toBits();
$b = str_pad($b, 256, '0', STR_PAD_LEFT);
for ($i = 0; $i < strlen($b); $i++) {
$b_i = (int) $b[$i];
if ($b_i) {
list($p2, $p1) = $this->doubleAndAddPoint($p2, $p1, $x);
} else {
list($p1, $p2) = $this->doubleAndAddPoint($p1, $p2, $x);
}
}
return $alreadyInternal ? $p1 : $this->convertToAffine($p1);
}
/**
* Converts an affine point to an XZ coordinate
*
* From https://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html
*
* XZ coordinates represent x y as X Z satsfying the following equations:
*
* x=X/Z
*
* @return \phpseclib\Math\PrimeField\Integer[]
*/
public function convertToInternal(array $p)
{
if (empty($p)) {
return [clone $this->zero, clone $this->one];
}
if (isset($p[1])) {
return $p;
}
$p[1] = clone $this->one;
return $p;
}
/**
* Returns the affine point
*
* @return \phpseclib\Math\PrimeField\Integer[]
*/
public function convertToAffine(array $p)
{
if (!isset($p[1])) {
return $p;
}
list($x, $z) = $p;
return [$x->divide($z)];
}
}