mirror of
https://github.com/danog/tgseclib.git
synced 2025-01-07 05:08:19 +01:00
285 lines
7.4 KiB
PHP
285 lines
7.4 KiB
PHP
<?php
|
|
|
|
/**
|
|
* Curves over y^2 = x^3 + a*x + x
|
|
*
|
|
* Technically, a Montgomery curve has a coefficient for y^2 but for Curve25519 and Curve448 that
|
|
* coefficient is 1.
|
|
*
|
|
* Curve25519 and Curve448 do not make use of the y coordinate, which makes it unsuitable for use
|
|
* with ECDSA / EdDSA. A few other differences between Curve25519 and Ed25519 are discussed at
|
|
* https://crypto.stackexchange.com/a/43058/4520
|
|
*
|
|
* More info:
|
|
*
|
|
* https://en.wikipedia.org/wiki/Montgomery_curve
|
|
*
|
|
* PHP version 5 and 7
|
|
*
|
|
* @category Crypt
|
|
* @package EC
|
|
* @author Jim Wigginton <terrafrost@php.net>
|
|
* @copyright 2019 Jim Wigginton
|
|
* @license http://www.opensource.org/licenses/mit-license.html MIT License
|
|
* @link http://pear.php.net/package/Math_BigInteger
|
|
*/
|
|
|
|
namespace phpseclib\Crypt\EC\BaseCurves;
|
|
|
|
use phpseclib\Math\Common\FiniteField\Integer;
|
|
use phpseclib\Common\Functions\Strings;
|
|
use phpseclib\Math\PrimeField;
|
|
use phpseclib\Math\BigInteger;
|
|
use phpseclib\Crypt\EC\Curves\Curve25519;
|
|
use phpseclib\Math\PrimeField\Integer as PrimeInteger;
|
|
|
|
/**
|
|
* Curves over y^2 = x^3 + a*x + x
|
|
*
|
|
* @package EC
|
|
* @author Jim Wigginton <terrafrost@php.net>
|
|
* @access public
|
|
*/
|
|
class Montgomery extends Base
|
|
{
|
|
/**
|
|
* Prime Field Integer factory
|
|
*
|
|
* @var \phpseclib\Math\PrimeFields
|
|
*/
|
|
protected $factory;
|
|
|
|
/**
|
|
* Cofficient for x
|
|
*
|
|
* @var object
|
|
*/
|
|
protected $a;
|
|
|
|
/**
|
|
* Constant used for point doubling
|
|
*
|
|
* @var object
|
|
*/
|
|
protected $a24;
|
|
|
|
/**
|
|
* The Number Zero
|
|
*
|
|
* @var object
|
|
*/
|
|
protected $zero;
|
|
|
|
/**
|
|
* The Number One
|
|
*
|
|
* @var object
|
|
*/
|
|
protected $one;
|
|
|
|
/**
|
|
* Base Point
|
|
*
|
|
* @var object
|
|
*/
|
|
protected $p;
|
|
|
|
/**
|
|
* The modulo
|
|
*
|
|
* @var BigInteger
|
|
*/
|
|
protected $modulo;
|
|
|
|
/**
|
|
* The Order
|
|
*
|
|
* @var BigInteger
|
|
*/
|
|
protected $order;
|
|
|
|
/**
|
|
* Sets the modulo
|
|
*/
|
|
public function setModulo(BigInteger $modulo)
|
|
{
|
|
$this->modulo = $modulo;
|
|
$this->factory = new PrimeField($modulo);
|
|
$this->zero = $this->factory->newInteger(new BigInteger());
|
|
$this->one = $this->factory->newInteger(new BigInteger(1));
|
|
}
|
|
|
|
/**
|
|
* Set coefficients a
|
|
*/
|
|
public function setCoefficients(BigInteger $a)
|
|
{
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
$this->a = $this->factory->newInteger($a);
|
|
$two = $this->factory->newInteger(new BigInteger(2));
|
|
$four = $this->factory->newInteger(new BigInteger(4));
|
|
$this->a24 = $this->a->subtract($two)->divide($four);
|
|
}
|
|
|
|
/**
|
|
* Set x and y coordinates for the base point
|
|
*
|
|
* @param BigInteger|PrimeInteger $x
|
|
* @param BigInteger|PrimeInteger $y
|
|
* @return PrimeInteger[]
|
|
*/
|
|
public function setBasePoint($x, $y)
|
|
{
|
|
switch (true) {
|
|
case !$x instanceof BigInteger && !$x instanceof PrimeInteger:
|
|
throw new \UnexpectedValueException('Argument 1 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
|
|
case !$y instanceof BigInteger && !$y instanceof PrimeInteger:
|
|
throw new \UnexpectedValueException('Argument 2 passed to Prime::setBasePoint() must be an instance of either BigInteger or PrimeField\Integer');
|
|
}
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
$this->p = [
|
|
$x instanceof BigInteger ? $this->factory->newInteger($x) : $x,
|
|
$y instanceof BigInteger ? $this->factory->newInteger($y) : $y
|
|
];
|
|
}
|
|
|
|
/**
|
|
* Retrieve the base point as an array
|
|
*
|
|
* @return array
|
|
*/
|
|
public function getBasePoint()
|
|
{
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
/*
|
|
if (!isset($this->p)) {
|
|
throw new \RuntimeException('setBasePoint needs to be called before this method');
|
|
}
|
|
*/
|
|
return $this->p;
|
|
}
|
|
|
|
/**
|
|
* Doubles and adds a point on a curve
|
|
*
|
|
* See https://tools.ietf.org/html/draft-ietf-tls-curve25519-01#appendix-A.1.3
|
|
*
|
|
* @return FiniteField[][]
|
|
*/
|
|
private function doubleAndAddPoint(array $p, array $q, PrimeInteger $x1)
|
|
{
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
|
|
if (!count($p) || !count($q)) {
|
|
return [];
|
|
}
|
|
|
|
if (!isset($p[1])) {
|
|
throw new \RuntimeException('Affine coordinates need to be manually converted to XZ coordinates');
|
|
}
|
|
|
|
list($x2, $z2) = $p;
|
|
list($x3, $z3) = $q;
|
|
|
|
$a = $x2->add($z2);
|
|
$aa = $a->multiply($a);
|
|
$b = $x2->subtract($z2);
|
|
$bb = $b->multiply($b);
|
|
$e = $aa->subtract($bb);
|
|
$c = $x3->add($z3);
|
|
$d = $x3->subtract($z3);
|
|
$da = $d->multiply($a);
|
|
$cb = $c->multiply($b);
|
|
$temp = $da->add($cb);
|
|
$x5 = $temp->multiply($temp);
|
|
$temp = $da->subtract($cb);
|
|
$z5 = $x1->multiply($temp->multiply($temp));
|
|
$x4 = $aa->multiply($bb);
|
|
$temp = static::class == Curve25519::class ? $bb : $aa;
|
|
$z4 = $e->multiply($temp->add($this->a24->multiply($e)));
|
|
|
|
return [
|
|
[$x4, $z4],
|
|
[$x5, $z5]
|
|
];
|
|
}
|
|
|
|
/**
|
|
* Multiply a point on the curve by a scalar
|
|
*
|
|
* Uses the montgomery ladder technique as described here:
|
|
*
|
|
* https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
|
|
* https://github.com/phpecc/phpecc/issues/16#issuecomment-59176772
|
|
*
|
|
* @return array
|
|
*/
|
|
public function multiplyPoint(array $p, Integer $d)
|
|
{
|
|
$p1 = [$this->one, $this->zero];
|
|
$alreadyInternal = isset($x[1]);
|
|
$p2 = $this->convertToInternal($p);
|
|
$x = $p[0];
|
|
|
|
$b = $d->toBits();
|
|
$b = str_pad($b, 256, '0', STR_PAD_LEFT);
|
|
for ($i = 0; $i < strlen($b); $i++) {
|
|
$b_i = (int) $b[$i];
|
|
if ($b_i) {
|
|
list($p2, $p1) = $this->doubleAndAddPoint($p2, $p1, $x);
|
|
} else {
|
|
list($p1, $p2) = $this->doubleAndAddPoint($p1, $p2, $x);
|
|
}
|
|
}
|
|
|
|
return $alreadyInternal ? $p1 : $this->convertToAffine($p1);
|
|
}
|
|
|
|
/**
|
|
* Converts an affine point to an XZ coordinate
|
|
*
|
|
* From https://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html
|
|
*
|
|
* XZ coordinates represent x y as X Z satsfying the following equations:
|
|
*
|
|
* x=X/Z
|
|
*
|
|
* @return \phpseclib\Math\PrimeField\Integer[]
|
|
*/
|
|
public function convertToInternal(array $p)
|
|
{
|
|
if (empty($p)) {
|
|
return [clone $this->zero, clone $this->one];
|
|
}
|
|
|
|
if (isset($p[1])) {
|
|
return $p;
|
|
}
|
|
|
|
$p[1] = clone $this->one;
|
|
|
|
return $p;
|
|
}
|
|
|
|
/**
|
|
* Returns the affine point
|
|
*
|
|
* @return \phpseclib\Math\PrimeField\Integer[]
|
|
*/
|
|
public function convertToAffine(array $p)
|
|
{
|
|
if (!isset($p[1])) {
|
|
return $p;
|
|
}
|
|
list($x, $z) = $p;
|
|
return [$x->divide($z)];
|
|
}
|
|
} |