mirror of
https://github.com/danog/tgseclib.git
synced 2024-12-14 18:16:26 +01:00
1465 lines
46 KiB
PHP
1465 lines
46 KiB
PHP
<?php
|
|
|
|
/**
|
|
* Wrapper around hash() and hash_hmac() functions supporting truncated hashes
|
|
* such as sha256-96. Any hash algorithm returned by hash_algos() (and
|
|
* truncated versions thereof) are supported.
|
|
*
|
|
* If {@link self::setKey() setKey()} is called, {@link self::hash() hash()} will
|
|
* return the HMAC as opposed to the hash.
|
|
*
|
|
* Here's a short example of how to use this library:
|
|
* <code>
|
|
* <?php
|
|
* include 'vendor/autoload.php';
|
|
*
|
|
* $hash = new \phpseclib\Crypt\Hash('sha512');
|
|
*
|
|
* $hash->setKey('abcdefg');
|
|
*
|
|
* echo base64_encode($hash->hash('abcdefg'));
|
|
* ?>
|
|
* </code>
|
|
*
|
|
* @category Crypt
|
|
* @package Hash
|
|
* @author Jim Wigginton <terrafrost@php.net>
|
|
* @copyright 2015 Jim Wigginton
|
|
* @author Andreas Fischer <bantu@phpbb.com>
|
|
* @copyright 2015 Andreas Fischer
|
|
* @license http://www.opensource.org/licenses/mit-license.html MIT License
|
|
* @link http://phpseclib.sourceforge.net
|
|
*/
|
|
|
|
namespace phpseclib\Crypt;
|
|
|
|
use phpseclib\Math\BigInteger;
|
|
use phpseclib\Exception\UnsupportedAlgorithmException;
|
|
use phpseclib\Exception\InsufficientSetupException;
|
|
use phpseclib\Common\Functions\Strings;
|
|
use phpseclib\Crypt\AES;
|
|
use phpseclib\Math\PrimeField;
|
|
|
|
/**
|
|
* @package Hash
|
|
* @author Jim Wigginton <terrafrost@php.net>
|
|
* @author Andreas Fischer <bantu@phpbb.com>
|
|
* @access public
|
|
*/
|
|
class Hash
|
|
{
|
|
/**#@+
|
|
* Padding Types
|
|
*
|
|
* @access private
|
|
*/
|
|
//const PADDING_KECCAK = 1;
|
|
const PADDING_SHA3 = 2;
|
|
const PADDING_SHAKE = 3;
|
|
/**#@-*/
|
|
|
|
/**
|
|
* Padding Type
|
|
*
|
|
* Only used by SHA3
|
|
*
|
|
* @var int
|
|
* @access private
|
|
*/
|
|
private $paddingType = 0;
|
|
|
|
/**
|
|
* Hash Parameter
|
|
*
|
|
* @see self::setHash()
|
|
* @var int
|
|
* @access private
|
|
*/
|
|
private $hashParam;
|
|
|
|
/**
|
|
* Byte-length of hash output (Internal HMAC)
|
|
*
|
|
* @see self::setHash()
|
|
* @var int
|
|
* @access private
|
|
*/
|
|
private $length;
|
|
|
|
/**
|
|
* Hash Algorithm
|
|
*
|
|
* @see self::setHash()
|
|
* @var string
|
|
* @access private
|
|
*/
|
|
private $hash;
|
|
|
|
/**
|
|
* Key
|
|
*
|
|
* @see self::setKey()
|
|
* @var string
|
|
* @access private
|
|
*/
|
|
private $key = false;
|
|
|
|
/**
|
|
* Nonce
|
|
*
|
|
* @see self::setNonce()
|
|
* @var string
|
|
* @access private
|
|
*/
|
|
private $nonce = false;
|
|
|
|
/**
|
|
* Hash Parameters
|
|
*
|
|
* @var array
|
|
* @access private
|
|
*/
|
|
private $parameters = [];
|
|
|
|
/**
|
|
* Computed Key
|
|
*
|
|
* @see self::_computeKey()
|
|
* @var string
|
|
* @access private
|
|
*/
|
|
private $computedKey = false;
|
|
|
|
/**
|
|
* Outer XOR (Internal HMAC)
|
|
*
|
|
* Used only for sha512/*
|
|
*
|
|
* @see self::hash()
|
|
* @var string
|
|
* @access private
|
|
*/
|
|
private $opad;
|
|
|
|
/**
|
|
* Inner XOR (Internal HMAC)
|
|
*
|
|
* Used only for sha512/*
|
|
*
|
|
* @see self::hash()
|
|
* @var string
|
|
* @access private
|
|
*/
|
|
private $ipad;
|
|
|
|
/**
|
|
* Recompute AES Key
|
|
*
|
|
* Used only for umac
|
|
*
|
|
* @see self::hash()
|
|
* @var boolean
|
|
* @access private
|
|
*/
|
|
private $recomputeAESKey;
|
|
|
|
/**
|
|
* umac cipher object
|
|
*
|
|
* @see self::hash()
|
|
* @var \phpseclib\Crypt\AES
|
|
* @access private
|
|
*/
|
|
private $c;
|
|
|
|
/**
|
|
* umac pad
|
|
*
|
|
* @see self::hash()
|
|
* @var string
|
|
* @access private
|
|
*/
|
|
private $pad;
|
|
|
|
/**#@+
|
|
* UMAC variables
|
|
*
|
|
* @var PrimeField
|
|
*/
|
|
private static $factory36;
|
|
private static $factory64;
|
|
private static $factory128;
|
|
private static $offset64;
|
|
private static $offset128;
|
|
private static $marker64;
|
|
private static $marker128;
|
|
private static $maxwordrange64;
|
|
private static $maxwordrange128;
|
|
/**#@-*/
|
|
|
|
/**
|
|
* Default Constructor.
|
|
*
|
|
* @param string $hash
|
|
* @access public
|
|
*/
|
|
public function __construct($hash = 'sha256')
|
|
{
|
|
$this->setHash($hash);
|
|
}
|
|
|
|
/**
|
|
* Sets the key for HMACs
|
|
*
|
|
* Keys can be of any length.
|
|
*
|
|
* @access public
|
|
* @param string $key
|
|
*/
|
|
public function setKey($key = false)
|
|
{
|
|
$this->key = $key;
|
|
$this->computeKey();
|
|
$this->recomputeAESKey = true;
|
|
}
|
|
|
|
/**
|
|
* Sets the nonce for UMACs
|
|
*
|
|
* Keys can be of any length.
|
|
*
|
|
* @access public
|
|
* @param string $nonce
|
|
*/
|
|
public function setNonce($nonce = false)
|
|
{
|
|
switch (true) {
|
|
case !is_string($nonce):
|
|
case strlen($nonce) > 0 && strlen($nonce) <= 16:
|
|
$this->recomputeAESKey = true;
|
|
$this->nonce = $nonce;
|
|
return;
|
|
}
|
|
|
|
throw new \LengthException('The nonce length must be between 1 and 16 bytes, inclusive');
|
|
}
|
|
|
|
/**
|
|
* Pre-compute the key used by the HMAC
|
|
*
|
|
* Quoting http://tools.ietf.org/html/rfc2104#section-2, "Applications that use keys longer than B bytes
|
|
* will first hash the key using H and then use the resultant L byte string as the actual key to HMAC."
|
|
*
|
|
* As documented in https://www.reddit.com/r/PHP/comments/9nct2l/symfonypolyfill_hash_pbkdf2_correct_fix_for/
|
|
* when doing an HMAC multiple times it's faster to compute the hash once instead of computing it during
|
|
* every call
|
|
*
|
|
* @access private
|
|
*/
|
|
private function computeKey()
|
|
{
|
|
if ($this->key === false) {
|
|
$this->computedKey = false;
|
|
return;
|
|
}
|
|
|
|
if (strlen($this->key) <= $this->getBlockLengthInBytes()) {
|
|
$this->computedKey = $this->key;
|
|
return;
|
|
}
|
|
|
|
$this->computedKey = is_array($this->hash) ?
|
|
call_user_func($this->hash, $this->key) :
|
|
hash($this->hash, $this->key, true);
|
|
}
|
|
|
|
/**
|
|
* Gets the hash function.
|
|
*
|
|
* As set by the constructor or by the setHash() method.
|
|
*
|
|
* @access public
|
|
* @return string
|
|
*/
|
|
public function getHash()
|
|
{
|
|
return $this->hashParam;
|
|
}
|
|
|
|
/**
|
|
* Sets the hash function.
|
|
*
|
|
* @access public
|
|
* @param string $hash
|
|
*/
|
|
public function setHash($hash)
|
|
{
|
|
$this->hashParam = $hash = strtolower($hash);
|
|
switch ($hash) {
|
|
case 'umac-32':
|
|
case 'umac-64':
|
|
case 'umac-96':
|
|
case 'umac-128':
|
|
$this->blockSize = 128;
|
|
$this->length = abs(substr($hash, -3)) >> 3;
|
|
$this->hash = 'umac';
|
|
return;
|
|
case 'md2-96':
|
|
case 'md5-96':
|
|
case 'sha1-96':
|
|
case 'sha224-96':
|
|
case 'sha256-96':
|
|
case 'sha384-96':
|
|
case 'sha512-96':
|
|
case 'sha512/224-96':
|
|
case 'sha512/256-96':
|
|
$hash = substr($hash, 0, -3);
|
|
$this->length = 12; // 96 / 8 = 12
|
|
break;
|
|
case 'md2':
|
|
case 'md5':
|
|
$this->length = 16;
|
|
break;
|
|
case 'sha1':
|
|
$this->length = 20;
|
|
break;
|
|
case 'sha224':
|
|
case 'sha512/224':
|
|
case 'sha3-224':
|
|
$this->length = 28;
|
|
break;
|
|
case 'sha256':
|
|
case 'sha512/256':
|
|
case 'sha3-256':
|
|
$this->length = 32;
|
|
break;
|
|
case 'sha384':
|
|
case 'sha3-384':
|
|
$this->length = 48;
|
|
break;
|
|
case 'sha512':
|
|
case 'sha3-512':
|
|
$this->length = 64;
|
|
break;
|
|
default:
|
|
if (preg_match('#^(shake(?:128|256))-(\d+)$#', $hash, $matches)) {
|
|
$this->paddingType = self::PADDING_SHAKE;
|
|
$hash = $matches[1];
|
|
$this->length = $matches[2] >> 3;
|
|
} else {
|
|
throw new UnsupportedAlgorithmException(
|
|
"$hash is not a supported algorithm"
|
|
);
|
|
}
|
|
}
|
|
|
|
switch ($hash) {
|
|
case 'md2':
|
|
case 'md2-96':
|
|
$this->blockSize = 128;
|
|
break;
|
|
case 'md5-96':
|
|
case 'sha1-96':
|
|
case 'sha224-96':
|
|
case 'sha256-96':
|
|
case 'md5':
|
|
case 'sha1':
|
|
case 'sha224':
|
|
case 'sha256':
|
|
$this->blockSize = 512;
|
|
break;
|
|
case 'sha3-224':
|
|
$this->blockSize = 1152; // 1600 - 2*224
|
|
break;
|
|
case 'sha3-256':
|
|
case 'shake256':
|
|
$this->blockSize = 1088; // 1600 - 2*256
|
|
break;
|
|
case 'sha3-384':
|
|
$this->blockSize = 832; // 1600 - 2*384
|
|
break;
|
|
case 'sha3-512':
|
|
$this->blockSize = 576; // 1600 - 2*512
|
|
break;
|
|
case 'shake128':
|
|
$this->blockSize = 1344; // 1600 - 2*128
|
|
break;
|
|
default:
|
|
$this->blockSize = 1024;
|
|
}
|
|
|
|
if (in_array(substr($hash, 0, 5), ['sha3-', 'shake'])) {
|
|
// PHP 7.1.0 introduced support for "SHA3 fixed mode algorithms":
|
|
// http://php.net/ChangeLog-7.php#7.1.0
|
|
if (version_compare(PHP_VERSION, '7.1.0') < 0 || substr($hash, 0,5) == 'shake') {
|
|
//preg_match('#(\d+)$#', $hash, $matches);
|
|
//$this->parameters['capacity'] = 2 * $matches[1]; // 1600 - $this->blockSize
|
|
//$this->parameters['rate'] = 1600 - $this->parameters['capacity']; // == $this->blockSize
|
|
if (!$this->paddingType) {
|
|
$this->paddingType = self::PADDING_SHA3;
|
|
}
|
|
$this->parameters = [
|
|
'capacity' => 1600 - $this->blockSize,
|
|
'rate' => $this->blockSize,
|
|
'length' => $this->length,
|
|
'padding' => $this->paddingType
|
|
];
|
|
$hash = ['phpseclib\Crypt\Hash', PHP_INT_SIZE == 8 ? 'sha3_64' : 'sha3_32'];
|
|
}
|
|
}
|
|
|
|
if ($hash == 'sha512/224' || $hash == 'sha512/256') {
|
|
// PHP 7.1.0 introduced sha512/224 and sha512/256 support:
|
|
// http://php.net/ChangeLog-7.php#7.1.0
|
|
if (version_compare(PHP_VERSION, '7.1.0') < 0) {
|
|
// from http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf#page=24
|
|
$initial = $hash == 'sha512/256' ?
|
|
[
|
|
'22312194FC2BF72C', '9F555FA3C84C64C2', '2393B86B6F53B151', '963877195940EABD',
|
|
'96283EE2A88EFFE3', 'BE5E1E2553863992', '2B0199FC2C85B8AA', '0EB72DDC81C52CA2'
|
|
] :
|
|
[
|
|
'8C3D37C819544DA2', '73E1996689DCD4D6', '1DFAB7AE32FF9C82', '679DD514582F9FCF',
|
|
'0F6D2B697BD44DA8', '77E36F7304C48942', '3F9D85A86A1D36C8', '1112E6AD91D692A1'
|
|
];
|
|
for ($i = 0; $i < 8; $i++) {
|
|
$initial[$i] = new BigInteger($initial[$i], 16);
|
|
$initial[$i]->setPrecision(64);
|
|
}
|
|
|
|
$this->parameters = compact('initial');
|
|
|
|
$hash = ['phpseclib\Crypt\Hash', 'sha512'];
|
|
}
|
|
}
|
|
|
|
if (is_array($hash)) {
|
|
$b = $this->blockSize >> 3;
|
|
$this->ipad = str_repeat(chr(0x36), $b);
|
|
$this->opad = str_repeat(chr(0x5C), $b);
|
|
}
|
|
|
|
$this->hash = $hash;
|
|
|
|
$this->computeKey();
|
|
}
|
|
|
|
/**
|
|
* KDF: Key-Derivation Function
|
|
*
|
|
* The key-derivation function generates pseudorandom bits used to key the hash functions.
|
|
*
|
|
* @param int $index a non-negative integer less than 2^64
|
|
* @param int $numbytes a non-negative integer less than 2^64
|
|
* @return string string of length numbytes bytes
|
|
*/
|
|
private function kdf($index, $numbytes)
|
|
{
|
|
$this->c->setIV(pack('N4', 0, $index, 0, 1));
|
|
|
|
return $this->c->encrypt(str_repeat("\0", $numbytes));
|
|
}
|
|
|
|
/**
|
|
* PDF Algorithm
|
|
*
|
|
* @return string string of length taglen bytes.
|
|
*/
|
|
private function pdf()
|
|
{
|
|
$k = $this->key;
|
|
$nonce = $this->nonce;
|
|
$taglen = $this->length;
|
|
|
|
//
|
|
// Extract and zero low bit(s) of Nonce if needed
|
|
//
|
|
if ($taglen <= 8) {
|
|
$last = strlen($nonce) - 1;
|
|
$mask = $taglen == 4 ? "\3" : "\1";
|
|
$index = $nonce[$last] & $mask;
|
|
$nonce[$last] = $nonce[$last] ^ $index;
|
|
}
|
|
|
|
//
|
|
// Make Nonce BLOCKLEN bytes by appending zeroes if needed
|
|
//
|
|
$nonce = str_pad($nonce, 16, "\0");
|
|
|
|
//
|
|
// Generate subkey, encipher and extract indexed substring
|
|
//
|
|
$kp = $this->kdf(0, 16);
|
|
$c = new AES('ctr');
|
|
$c->disablePadding();
|
|
$c->setKey($kp);
|
|
$c->setIV($nonce);
|
|
$t = $c->encrypt("\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0");
|
|
|
|
// we could use ord() but per https://paragonie.com/blog/2016/06/constant-time-encoding-boring-cryptography-rfc-4648-and-you
|
|
// unpack() doesn't leak timing info
|
|
return $taglen <= 8 ?
|
|
substr($t, unpack('C', $index)[1] * $taglen, $taglen) :
|
|
substr($t, 0, $taglen);
|
|
}
|
|
|
|
/**
|
|
* UHASH Algorithm
|
|
*
|
|
* @param string $m string of length less than 2^67 bits.
|
|
* @param int $taglen the integer 4, 8, 12 or 16.
|
|
* @return string string of length taglen bytes.
|
|
*/
|
|
private function uhash($m, $taglen)
|
|
{
|
|
//
|
|
// One internal iteration per 4 bytes of output
|
|
//
|
|
$iters = $taglen >> 2;
|
|
|
|
//
|
|
// Define total key needed for all iterations using KDF.
|
|
// L1Key reuses most key material between iterations.
|
|
//
|
|
//$L1Key = $this->kdf(1, 1024 + ($iters - 1) * 16);
|
|
$L1Key = $this->kdf(1, (1024 + ($iters - 1)) * 16);
|
|
$L2Key = $this->kdf(2, $iters * 24);
|
|
$L3Key1 = $this->kdf(3, $iters * 64);
|
|
$L3Key2 = $this->kdf(4, $iters * 4);
|
|
|
|
//
|
|
// For each iteration, extract key and do three-layer hash.
|
|
// If bytelength(M) <= 1024, then skip L2-HASH.
|
|
//
|
|
$y = '';
|
|
for ($i = 0; $i < $iters; $i++) {
|
|
$L1Key_i = substr($L1Key, $i * 16, 1024);
|
|
$L2Key_i = substr($L2Key, $i * 24, 24);
|
|
$L3Key1_i = substr($L3Key1, $i * 64, 64);
|
|
$L3Key2_i = substr($L3Key2, $i * 4, 4);
|
|
|
|
$a = self::L1Hash($L1Key_i, $m);
|
|
$b = strlen($m) <= 1024 ? "\0\0\0\0\0\0\0\0$a" : self::L2Hash($L2Key_i, $a);
|
|
$c = self::L3Hash($L3Key1_i, $L3Key2_i, $b);
|
|
$y.= $c;
|
|
}
|
|
|
|
return $y;
|
|
}
|
|
|
|
/**
|
|
* L1-HASH Algorithm
|
|
*
|
|
* The first-layer hash breaks the message into 1024-byte chunks and
|
|
* hashes each with a function called NH. Concatenating the results
|
|
* forms a string, which is up to 128 times shorter than the original.
|
|
*
|
|
* @param string $k string of length 1024 bytes.
|
|
* @param string $m string of length less than 2^67 bits.
|
|
* @return string string of length (8 * ceil(bitlength(M)/8192)) bytes.
|
|
*/
|
|
private static function L1Hash($k, $m)
|
|
{
|
|
//
|
|
// Break M into 1024 byte chunks (final chunk may be shorter)
|
|
//
|
|
$m = str_split($m, 1024);
|
|
|
|
//
|
|
// For each chunk, except the last: endian-adjust, NH hash
|
|
// and add bit-length. Use results to build Y.
|
|
//
|
|
$length = new BigInteger(1024 * 8);
|
|
$y = '';
|
|
for ($i = 0; $i < count($m) - 1; $i++) {
|
|
$m[$i] = pack('N*', ...unpack('V*', $m[$i])); // ENDIAN-SWAP
|
|
$y.= static::nh($k, $m[$i], $length);
|
|
}
|
|
|
|
//
|
|
// For the last chunk: pad to 32-byte boundary, endian-adjust,
|
|
// NH hash and add bit-length. Concatenate the result to Y.
|
|
//
|
|
$length = strlen($m[$i]);
|
|
$pad = 32 - ($length % 32);
|
|
$pad = max(32, $length + $pad % 32);
|
|
$m[$i] = str_pad($m[$i], $pad, "\0"); // zeropad
|
|
$m[$i] = pack('N*', ...unpack('V*', $m[$i])); // ENDIAN-SWAP
|
|
|
|
$y.= static::nh($k, $m[$i], new BigInteger($length * 8));
|
|
|
|
return $y;
|
|
}
|
|
|
|
/**
|
|
* NH Algorithm
|
|
*
|
|
* @param string $k string of length 1024 bytes.
|
|
* @param string $m string with length divisible by 32 bytes.
|
|
* @return string string of length 8 bytes.
|
|
*/
|
|
private static function nh($k, $m, $length)
|
|
{
|
|
$toUInt32 = function($x) {
|
|
$x = new BigInteger($x, 256);
|
|
$x->setPrecision(32);
|
|
return $x;
|
|
};
|
|
|
|
//
|
|
// Break M and K into 4-byte chunks
|
|
//
|
|
//$t = strlen($m) >> 2;
|
|
$m = str_split($m, 4);
|
|
$t = count($m);
|
|
$k = str_split($k, 4);
|
|
$k = array_pad(array_slice($k, 0, $t), $t, 0);
|
|
|
|
$m = array_map($toUInt32, $m);
|
|
$k = array_map($toUInt32, $k);
|
|
|
|
//
|
|
// Perform NH hash on the chunks, pairing words for multiplication
|
|
// which are 4 apart to accommodate vector-parallelism.
|
|
//
|
|
$y = new BigInteger;
|
|
$y->setPrecision(64);
|
|
$i = 0;
|
|
while ($i < $t) {
|
|
$temp = $m[$i]->add($k[$i]);
|
|
$temp->setPrecision(64);
|
|
$temp = $temp->multiply($m[$i + 4]->add($k[$i + 4]));
|
|
$y = $y->add($temp);
|
|
|
|
$temp = $m[$i + 1]->add($k[$i + 1]);
|
|
$temp->setPrecision(64);
|
|
$temp = $temp->multiply($m[$i + 5]->add($k[$i + 5]));
|
|
$y = $y->add($temp);
|
|
|
|
$temp = $m[$i + 2]->add($k[$i + 2]);
|
|
$temp->setPrecision(64);
|
|
$temp = $temp->multiply($m[$i + 6]->add($k[$i + 6]));
|
|
$y = $y->add($temp);
|
|
|
|
$temp = $m[$i + 3]->add($k[$i + 3]);
|
|
$temp->setPrecision(64);
|
|
$temp = $temp->multiply($m[$i + 7]->add($k[$i + 7]));
|
|
$y = $y->add($temp);
|
|
|
|
$i+= 8;
|
|
}
|
|
|
|
return $y->add($length)->toBytes();
|
|
}
|
|
|
|
/**
|
|
* L2-HASH: Second-Layer Hash
|
|
*
|
|
* The second-layer rehashes the L1-HASH output using a polynomial hash
|
|
* called POLY. If the L1-HASH output is long, then POLY is called once
|
|
* on a prefix of the L1-HASH output and called using different settings
|
|
* on the remainder. (This two-step hashing of the L1-HASH output is
|
|
* needed only if the message length is greater than 16 megabytes.)
|
|
* Careful implementation of POLY is necessary to avoid a possible
|
|
* timing attack (see Section 6.6 for more information).
|
|
*
|
|
* @param string $k string of length 24 bytes.
|
|
* @param string $m string of length less than 2^64 bytes.
|
|
* @return string string of length 16 bytes.
|
|
*/
|
|
private static function L2Hash($k, $m)
|
|
{
|
|
//
|
|
// Extract keys and restrict to special key-sets
|
|
//
|
|
$k64 = $k & "\x01\xFF\xFF\xFF\x01\xFF\xFF\xFF";
|
|
$k64 = new BigInteger($k64, 256);
|
|
$k128 = substr($k, 8) & "\x01\xFF\xFF\xFF\x01\xFF\xFF\xFF\x01\xFF\xFF\xFF\x01\xFF\xFF\xFF";
|
|
$k128 = new BigInteger($k128, 256);
|
|
|
|
//
|
|
// If M is no more than 2^17 bytes, hash under 64-bit prime,
|
|
// otherwise, hash first 2^17 bytes under 64-bit prime and
|
|
// remainder under 128-bit prime.
|
|
//
|
|
if (strlen($m) <= 0x20000) { // 2^14 64-bit words
|
|
$y = self::poly(64, self::$maxwordrange64, $k64, $m);
|
|
} else {
|
|
$m_1 = substr($m, 0, 0x20000); // 1 << 17
|
|
$m_2 = substr($m, 0x20000) . "\x80";
|
|
$length = strlen($m_2);
|
|
$pad = 16 - ($length % 16);
|
|
$pad%= 16;
|
|
$m_2 = str_pad($m_2, $length + $pad, "\0"); // zeropad
|
|
$y = self::poly(64, self::$maxwordrange64, $k64, $m_1);
|
|
$y = str_pad($y, 16, "\0", STR_PAD_LEFT);
|
|
$y = self::poly(128, self::$maxwordrange128, $k128, $y . $m_2);
|
|
}
|
|
|
|
return str_pad($y, 16, "\0", STR_PAD_LEFT);
|
|
}
|
|
|
|
/**
|
|
* POLY Algorithm
|
|
*
|
|
* @param int $wordbits the integer 64 or 128.
|
|
* @param BigInteger $maxwordrange positive integer less than 2^wordbits.
|
|
* @param BigInteger $k integer in the range 0 ... prime(wordbits) - 1.
|
|
* @param string $m string with length divisible by (wordbits / 8) bytes.
|
|
* @return integer in the range 0 ... prime(wordbits) - 1.
|
|
*/
|
|
private static function poly($wordbits, $maxwordrange, $k, $m)
|
|
{
|
|
//
|
|
// Define constants used for fixing out-of-range words
|
|
//
|
|
$wordbytes = $wordbits >> 3;
|
|
if ($wordbits == 128) {
|
|
$factory = self::$factory128;
|
|
$offset = self::$offset128;
|
|
$marker = self::$marker128;
|
|
} else {
|
|
$factory = self::$factory64;
|
|
$offset = self::$offset64;
|
|
$marker = self::$marker64;
|
|
}
|
|
|
|
$k = $factory->newInteger($k);
|
|
|
|
//
|
|
// Break M into chunks of length wordbytes bytes
|
|
//
|
|
$m_i = str_split($m, $wordbytes);
|
|
|
|
//
|
|
// Each input word m is compared with maxwordrange. If not smaller
|
|
// then 'marker' and (m - offset), both in range, are hashed.
|
|
//
|
|
$y = $factory->newInteger(new BigInteger(1));
|
|
foreach ($m_i as $m) {
|
|
$m = $factory->newInteger(new BigInteger($m, 256));
|
|
if ($m->compare($maxwordrange) >= 0) {
|
|
$y = $k->multiply($y)->add($marker);
|
|
$y = $k->multiply($y)->add($m->subtract($offset));
|
|
} else {
|
|
$y = $k->multiply($y)->add($m);
|
|
}
|
|
}
|
|
|
|
return $y->toBytes();
|
|
}
|
|
|
|
/**
|
|
* L3-HASH: Third-Layer Hash
|
|
*
|
|
* The output from L2-HASH is 16 bytes long. This final hash function
|
|
* hashes the 16-byte string to a fixed length of 4 bytes.
|
|
*
|
|
* @param string $k1 string of length 64 bytes.
|
|
* @param string $k2 string of length 4 bytes.
|
|
* @param string $m string of length 16 bytes.
|
|
* @return string string of length 4 bytes.
|
|
*/
|
|
private static function L3Hash($k1, $k2, $m)
|
|
{
|
|
$factory = self::$factory36;
|
|
|
|
$y = $factory->newInteger(new BigInteger());
|
|
for ($i = 0; $i < 8; $i++) {
|
|
$m_i = $factory->newInteger(new BigInteger(substr($m, 2 * $i, 2), 256));
|
|
$k_i = $factory->newInteger(new BigInteger(substr($k1, 8 * $i, 8), 256));
|
|
$y = $y->add($m_i->multiply($k_i));
|
|
}
|
|
$y = str_pad(substr($y->toBytes(), -4), 4, "\0", STR_PAD_LEFT);
|
|
$y = $y ^ $k2;
|
|
|
|
return $y;
|
|
}
|
|
|
|
/**
|
|
* Compute the Hash / HMAC / UMAC.
|
|
*
|
|
* @access public
|
|
* @param string $text
|
|
* @return string
|
|
*/
|
|
public function hash($text)
|
|
{
|
|
if ($this->hash == 'umac') {
|
|
if ($this->recomputeAESKey) {
|
|
if (!is_string($this->nonce)) {
|
|
throw new InsufficientSetupException('No nonce has been set');
|
|
}
|
|
if (!is_string($this->key)) {
|
|
throw new InsufficientSetupException('No key has been set');
|
|
}
|
|
if (strlen($this->key) != 16) {
|
|
throw new \LengthException('Key must be 16 bytes long');
|
|
}
|
|
|
|
if (!isset(self::$maxwordrange64)) {
|
|
$one = new BigInteger(1);
|
|
|
|
$prime36 = new BigInteger("\x00\x00\x00\x0F\xFF\xFF\xFF\xFB", 256);
|
|
self::$factory36 = new PrimeField($prime36);
|
|
|
|
$prime64 = new BigInteger("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xC5", 256);
|
|
self::$factory64 = new PrimeField($prime64);
|
|
|
|
$prime128 = new BigInteger("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x61", 256);
|
|
self::$factory128 = new PrimeField($prime128);
|
|
|
|
self::$offset64 = new BigInteger("\1\0\0\0\0\0\0\0\0", 256);
|
|
self::$offset64 = self::$factory64->newInteger(self::$offset64->subtract($prime64));
|
|
self::$offset128 = new BigInteger("\1\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 256);
|
|
self::$offset128 = self::$factory128->newInteger(self::$offset128->subtract($prime128));
|
|
|
|
self::$marker64 = self::$factory64->newInteger($prime64->subtract($one));
|
|
self::$marker128 = self::$factory128->newInteger($prime128->subtract($one));
|
|
|
|
$maxwordrange64 = $one->bitwise_leftShift(64)->subtract($one->bitwise_leftShift(32));
|
|
self::$maxwordrange64 = self::$factory64->newInteger($maxwordrange64);
|
|
|
|
$maxwordrange128 = $one->bitwise_leftShift(128)->subtract($one->bitwise_leftShift(96));
|
|
self::$maxwordrange128 = self::$factory128->newInteger($maxwordrange128);
|
|
}
|
|
|
|
$this->c = new AES('ctr');
|
|
$this->c->disablePadding();
|
|
$this->c->setKey($this->key);
|
|
|
|
$this->pad = $this->pdf();
|
|
|
|
$this->recomputeAESKey = false;
|
|
}
|
|
|
|
$hashedmessage = $this->uhash($text, $this->length);
|
|
return $hashedmessage ^ $this->pad;
|
|
}
|
|
|
|
if (is_array($this->hash)) {
|
|
if (empty($this->key) || !is_string($this->key)) {
|
|
return substr(call_user_func($this->hash, $text, ...array_values($this->parameters)), 0, $this->length);
|
|
}
|
|
|
|
// SHA3 HMACs are discussed at https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf#page=30
|
|
|
|
$key = str_pad($this->computedKey, $b, chr(0));
|
|
$temp = $this->ipad ^ $key;
|
|
$temp .= $text;
|
|
$temp = substr(call_user_func($this->hash, $temp, ...array_values($this->parameters)), 0, $this->length);
|
|
$output = $this->opad ^ $key;
|
|
$output.= $temp;
|
|
$output = call_user_func($this->hash, $output, ...array_values($this->parameters));
|
|
|
|
return substr($output, 0, $this->length);
|
|
}
|
|
|
|
$output = !empty($this->key) || is_string($this->key) ?
|
|
hash_hmac($this->hash, $text, $this->computedKey, true) :
|
|
hash($this->hash, $text, true);
|
|
|
|
return strlen($output) > $this->length
|
|
? substr($output, 0, $this->length)
|
|
: $output;
|
|
}
|
|
|
|
/**
|
|
* Returns the hash length (in bits)
|
|
*
|
|
* @access public
|
|
* @return int
|
|
*/
|
|
public function getLength()
|
|
{
|
|
return $this->length << 3;
|
|
}
|
|
|
|
/**
|
|
* Returns the hash length (in bytes)
|
|
*
|
|
* @access public
|
|
* @return int
|
|
*/
|
|
public function getLengthInBytes()
|
|
{
|
|
return $this->length;
|
|
}
|
|
|
|
/**
|
|
* Returns the block length (in bits)
|
|
*
|
|
* @access public
|
|
* @return int
|
|
*/
|
|
public function getBlockLength()
|
|
{
|
|
return $this->blockSize;
|
|
}
|
|
|
|
/**
|
|
* Returns the block length (in bytes)
|
|
*
|
|
* @access public
|
|
* @return int
|
|
*/
|
|
public function getBlockLengthInBytes()
|
|
{
|
|
return $this->blockSize >> 3;
|
|
}
|
|
|
|
/**
|
|
* Pads SHA3 based on the mode
|
|
*
|
|
* @access private
|
|
* @param int $padLength
|
|
* @param int $padType
|
|
* @return string
|
|
*/
|
|
private static function sha3_pad($padLength, $padType)
|
|
{
|
|
switch ($padType) {
|
|
//case self::PADDING_KECCAK:
|
|
// $temp = chr(0x06) . str_repeat("\0", $padLength - 1);
|
|
// $temp[$padLength - 1] = $temp[$padLength - 1] | chr(0x80);
|
|
// return $temp
|
|
case self::PADDING_SHAKE:
|
|
$temp = chr(0x1F) . str_repeat("\0", $padLength - 1);
|
|
$temp[$padLength - 1] = $temp[$padLength - 1] | chr(0x80);
|
|
return $temp;
|
|
//case self::PADDING_SHA3:
|
|
default:
|
|
// from https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf#page=36
|
|
return $padLength == 1 ? chr(0x86) : chr(0x06) . str_repeat("\0", $padLength - 2) . chr(0x80);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Pure-PHP 32-bit implementation of SHA3
|
|
*
|
|
* Whereas BigInteger.php's 32-bit engine works on PHP 64-bit this 32-bit implementation
|
|
* of SHA3 will *not* work on PHP 64-bit. This is because this implementation
|
|
* employees bitwise NOTs and bitwise left shifts. And the round constants only work
|
|
* on 32-bit PHP. eg. dechex(-2147483648) returns 80000000 on 32-bit PHP and
|
|
* FFFFFFFF80000000 on 64-bit PHP. Sure, we could do bitwise ANDs but that would slow
|
|
* things down.
|
|
*
|
|
* SHA512 requires BigInteger to simulate 64-bit unsigned integers because SHA2 employees
|
|
* addition whereas SHA3 just employees bitwise operators. PHP64 only supports signed
|
|
* 64-bit integers, which complicates addition, whereas that limitation isn't an issue
|
|
* for SHA3.
|
|
*
|
|
* In https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=919061#page=16 KECCAK[C] is
|
|
* defined as "the KECCAK instance with KECCAK-f[1600] as the underlying permutation and
|
|
* capacity c". This is relevant because, altho the KECCAK standard defines a mode
|
|
* (KECCAK-f[800]) designed for 32-bit machines that mode is incompatible with SHA3
|
|
*
|
|
* @access private
|
|
* @param string $p
|
|
* @param int $c
|
|
* @param int $r
|
|
* @param int $d
|
|
* @param int $padType
|
|
*/
|
|
private static function sha3_32($p, $c, $r, $d, $padType)
|
|
{
|
|
$block_size = $r >> 3;
|
|
$padLength = $block_size - (strlen($p) % $block_size);
|
|
$num_ints = $block_size >> 2;
|
|
|
|
$p.= static::sha3_pad($padLength, $padType);
|
|
|
|
$n = strlen($p) / $r; // number of blocks
|
|
|
|
$s = [
|
|
[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]],
|
|
[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]],
|
|
[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]],
|
|
[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]],
|
|
[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]
|
|
];
|
|
|
|
$p = str_split($p, $block_size);
|
|
|
|
foreach ($p as $pi) {
|
|
$pi = unpack('V*', $pi);
|
|
$x = $y = 0;
|
|
for ($i = 1; $i <= $num_ints; $i+=2) {
|
|
$s[$x][$y][0]^= $pi[$i + 1];
|
|
$s[$x][$y][1]^= $pi[$i];
|
|
if (++$y == 5) {
|
|
$y = 0;
|
|
$x++;
|
|
}
|
|
}
|
|
static::processSHA3Block32($s);
|
|
}
|
|
|
|
$z = '';
|
|
$i = $j = 0;
|
|
while (strlen($z) < $d) {
|
|
$z.= pack('V2', $s[$i][$j][1], $s[$i][$j++][0]);
|
|
if ($j == 5) {
|
|
$j = 0;
|
|
$i++;
|
|
if ($i == 5) {
|
|
$i = 0;
|
|
static::processSHA3Block32($s);
|
|
}
|
|
}
|
|
}
|
|
|
|
return $z;
|
|
}
|
|
|
|
/**
|
|
* 32-bit block processing method for SHA3
|
|
*
|
|
* @access private
|
|
* @param array $s
|
|
*/
|
|
private static function processSHA3Block32(&$s)
|
|
{
|
|
static $rotationOffsets = [
|
|
[ 0, 1, 62, 28, 27],
|
|
[36, 44, 6, 55, 20],
|
|
[ 3, 10, 43, 25, 39],
|
|
[41, 45, 15, 21, 8],
|
|
[18, 2, 61, 56, 14]
|
|
];
|
|
|
|
// the standards give these constants in hexadecimal notation. it's tempting to want to use
|
|
// that same notation, here, however, we can't, because 0x80000000, on PHP32, is a positive
|
|
// float - not the negative int that we need to be in PHP32. so we use -2147483648 instead
|
|
static $roundConstants = [
|
|
[0, 1],
|
|
[0, 32898],
|
|
[-2147483648, 32906],
|
|
[-2147483648, -2147450880],
|
|
[0, 32907],
|
|
[0, -2147483647],
|
|
[-2147483648, -2147450751],
|
|
[-2147483648, 32777],
|
|
[0, 138],
|
|
[0, 136],
|
|
[0, -2147450871],
|
|
[0, -2147483638],
|
|
[0, -2147450741],
|
|
[-2147483648, 139],
|
|
[-2147483648, 32905],
|
|
[-2147483648, 32771],
|
|
[-2147483648, 32770],
|
|
[-2147483648, 128],
|
|
[0, 32778],
|
|
[-2147483648, -2147483638],
|
|
[-2147483648, -2147450751],
|
|
[-2147483648, 32896],
|
|
[0, -2147483647],
|
|
[-2147483648, -2147450872]
|
|
];
|
|
|
|
for ($round = 0; $round < 24; $round++) {
|
|
// theta step
|
|
$parity = $rotated = [];
|
|
for ($i = 0; $i < 5; $i++) {
|
|
$parity[] = [
|
|
$s[0][$i][0] ^ $s[1][$i][0] ^ $s[2][$i][0] ^ $s[3][$i][0] ^ $s[4][$i][0],
|
|
$s[0][$i][1] ^ $s[1][$i][1] ^ $s[2][$i][1] ^ $s[3][$i][1] ^ $s[4][$i][1]
|
|
];
|
|
$rotated[] = static::rotateLeft32($parity[$i], 1);
|
|
}
|
|
|
|
$temp = [
|
|
[$parity[4][0] ^ $rotated[1][0], $parity[4][1] ^ $rotated[1][1]],
|
|
[$parity[0][0] ^ $rotated[2][0], $parity[0][1] ^ $rotated[2][1]],
|
|
[$parity[1][0] ^ $rotated[3][0], $parity[1][1] ^ $rotated[3][1]],
|
|
[$parity[2][0] ^ $rotated[4][0], $parity[2][1] ^ $rotated[4][1]],
|
|
[$parity[3][0] ^ $rotated[0][0], $parity[3][1] ^ $rotated[0][1]]
|
|
];
|
|
for ($i = 0; $i < 5; $i++) {
|
|
for ($j = 0; $j < 5; $j++) {
|
|
$s[$i][$j][0]^= $temp[$j][0];
|
|
$s[$i][$j][1]^= $temp[$j][1];
|
|
}
|
|
}
|
|
|
|
$st = $s;
|
|
|
|
// rho and pi steps
|
|
for ($i = 0; $i < 5; $i++) {
|
|
for ($j = 0; $j < 5; $j++) {
|
|
$st[(2 * $i + 3 * $j) % 5][$j] = static::rotateLeft32($s[$j][$i], $rotationOffsets[$j][$i]);
|
|
}
|
|
}
|
|
|
|
// chi step
|
|
for ($i = 0; $i < 5; $i++) {
|
|
$s[$i][0] = [
|
|
$st[$i][0][0] ^ (~$st[$i][1][0] & $st[$i][2][0]),
|
|
$st[$i][0][1] ^ (~$st[$i][1][1] & $st[$i][2][1])
|
|
];
|
|
$s[$i][1] = [
|
|
$st[$i][1][0] ^ (~$st[$i][2][0] & $st[$i][3][0]),
|
|
$st[$i][1][1] ^ (~$st[$i][2][1] & $st[$i][3][1])
|
|
];
|
|
$s[$i][2] = [
|
|
$st[$i][2][0] ^ (~$st[$i][3][0] & $st[$i][4][0]),
|
|
$st[$i][2][1] ^ (~$st[$i][3][1] & $st[$i][4][1])
|
|
];
|
|
$s[$i][3] = [
|
|
$st[$i][3][0] ^ (~$st[$i][4][0] & $st[$i][0][0]),
|
|
$st[$i][3][1] ^ (~$st[$i][4][1] & $st[$i][0][1])
|
|
];
|
|
$s[$i][4] = [
|
|
$st[$i][4][0] ^ (~$st[$i][0][0] & $st[$i][1][0]),
|
|
$st[$i][4][1] ^ (~$st[$i][0][1] & $st[$i][1][1])
|
|
];
|
|
}
|
|
|
|
// iota step
|
|
$s[0][0][0]^= $roundConstants[$round][0];
|
|
$s[0][0][1]^= $roundConstants[$round][1];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Rotate 32-bit int
|
|
*
|
|
* @access private
|
|
* @param array $x
|
|
* @param int $shift
|
|
*/
|
|
private static function rotateLeft32($x, $shift)
|
|
{
|
|
if ($shift < 32) {
|
|
list($hi, $lo) = $x;
|
|
} else {
|
|
$shift-= 32;
|
|
list($lo, $hi) = $x;
|
|
}
|
|
|
|
return [
|
|
($hi << $shift) | (($lo >> (32 - $shift)) & (1 << $shift) - 1),
|
|
($lo << $shift) | (($hi >> (32 - $shift)) & (1 << $shift) - 1)
|
|
];
|
|
}
|
|
|
|
/**
|
|
* Pure-PHP 64-bit implementation of SHA3
|
|
*
|
|
* @access private
|
|
* @param string $p
|
|
* @param int $c
|
|
* @param int $r
|
|
* @param int $d
|
|
* @param int $padType
|
|
*/
|
|
private static function sha3_64($p, $c, $r, $d, $padType)
|
|
{
|
|
$block_size = $r >> 3;
|
|
$padLength = $block_size - (strlen($p) % $block_size);
|
|
$num_ints = $block_size >> 2;
|
|
|
|
$p.= static::sha3_pad($padLength, $padType);
|
|
|
|
$n = strlen($p) / $r; // number of blocks
|
|
|
|
$s = [
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]
|
|
];
|
|
|
|
$p = str_split($p, $block_size);
|
|
|
|
foreach ($p as $pi) {
|
|
$pi = unpack('P*', $pi);
|
|
$x = $y = 0;
|
|
foreach ($pi as $subpi) {
|
|
$s[$x][$y++]^= $subpi;
|
|
if ($y == 5) {
|
|
$y = 0;
|
|
$x++;
|
|
}
|
|
}
|
|
static::processSHA3Block64($s);
|
|
}
|
|
|
|
$z = '';
|
|
$i = $j = 0;
|
|
while (strlen($z) < $d) {
|
|
$z.= pack('P', $s[$i][$j++]);
|
|
if ($j == 5) {
|
|
$j = 0;
|
|
$i++;
|
|
if ($i == 5) {
|
|
$i = 0;
|
|
static::processSHA3Block64($s);
|
|
}
|
|
}
|
|
}
|
|
|
|
return $z;
|
|
}
|
|
|
|
/**
|
|
* 64-bit block processing method for SHA3
|
|
*
|
|
* @access private
|
|
* @param array $s
|
|
*/
|
|
private static function processSHA3Block64(&$s)
|
|
{
|
|
static $rotationOffsets = [
|
|
[ 0, 1, 62, 28, 27],
|
|
[36, 44, 6, 55, 20],
|
|
[ 3, 10, 43, 25, 39],
|
|
[41, 45, 15, 21, 8],
|
|
[18, 2, 61, 56, 14]
|
|
];
|
|
|
|
static $roundConstants = [
|
|
1,
|
|
32898,
|
|
-9223372036854742902,
|
|
-9223372034707259392,
|
|
32907,
|
|
2147483649,
|
|
-9223372034707259263,
|
|
-9223372036854743031,
|
|
138,
|
|
136,
|
|
2147516425,
|
|
2147483658,
|
|
2147516555,
|
|
-9223372036854775669,
|
|
-9223372036854742903,
|
|
-9223372036854743037,
|
|
-9223372036854743038,
|
|
-9223372036854775680,
|
|
32778,
|
|
-9223372034707292150,
|
|
-9223372034707259263,
|
|
-9223372036854742912,
|
|
2147483649,
|
|
-9223372034707259384
|
|
];
|
|
|
|
for ($round = 0; $round < 24; $round++) {
|
|
// theta step
|
|
$parity = [];
|
|
for ($i = 0; $i < 5; $i++) {
|
|
$parity[] = $s[0][$i] ^ $s[1][$i] ^ $s[2][$i] ^ $s[3][$i] ^ $s[4][$i];
|
|
}
|
|
$temp = [
|
|
$parity[4] ^ static::rotateLeft64($parity[1], 1),
|
|
$parity[0] ^ static::rotateLeft64($parity[2], 1),
|
|
$parity[1] ^ static::rotateLeft64($parity[3], 1),
|
|
$parity[2] ^ static::rotateLeft64($parity[4], 1),
|
|
$parity[3] ^ static::rotateLeft64($parity[0], 1)
|
|
];
|
|
for ($i = 0; $i < 5; $i++) {
|
|
for ($j = 0; $j < 5; $j++) {
|
|
$s[$i][$j]^= $temp[$j];
|
|
}
|
|
}
|
|
|
|
$st = $s;
|
|
|
|
// rho and pi steps
|
|
for ($i = 0; $i < 5; $i++) {
|
|
for ($j = 0; $j < 5; $j++) {
|
|
$st[(2 * $i + 3 * $j) % 5][$j] = static::rotateLeft64($s[$j][$i], $rotationOffsets[$j][$i]);
|
|
}
|
|
}
|
|
|
|
// chi step
|
|
for ($i = 0; $i < 5; $i++) {
|
|
$s[$i] = [
|
|
$st[$i][0] ^ (~$st[$i][1] & $st[$i][2]),
|
|
$st[$i][1] ^ (~$st[$i][2] & $st[$i][3]),
|
|
$st[$i][2] ^ (~$st[$i][3] & $st[$i][4]),
|
|
$st[$i][3] ^ (~$st[$i][4] & $st[$i][0]),
|
|
$st[$i][4] ^ (~$st[$i][0] & $st[$i][1])
|
|
];
|
|
}
|
|
|
|
// iota step
|
|
$s[0][0]^= $roundConstants[$round];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Rotate 64-bit int
|
|
*
|
|
* @access private
|
|
* @param int $x
|
|
* @param int $shift
|
|
*/
|
|
private static function rotateLeft64($x, $shift)
|
|
{
|
|
return ($x << $shift) | (($x >> (64 - $shift)) & ((1 << $shift) - 1));
|
|
}
|
|
|
|
/**
|
|
* Pure-PHP implementation of SHA512
|
|
*
|
|
* @access private
|
|
* @param string $m
|
|
* @param array $hash
|
|
* @return string
|
|
*/
|
|
private static function sha512($m, $hash)
|
|
{
|
|
static $k;
|
|
|
|
if (!isset($k)) {
|
|
// Initialize table of round constants
|
|
// (first 64 bits of the fractional parts of the cube roots of the first 80 primes 2..409)
|
|
$k = [
|
|
'428a2f98d728ae22', '7137449123ef65cd', 'b5c0fbcfec4d3b2f', 'e9b5dba58189dbbc',
|
|
'3956c25bf348b538', '59f111f1b605d019', '923f82a4af194f9b', 'ab1c5ed5da6d8118',
|
|
'd807aa98a3030242', '12835b0145706fbe', '243185be4ee4b28c', '550c7dc3d5ffb4e2',
|
|
'72be5d74f27b896f', '80deb1fe3b1696b1', '9bdc06a725c71235', 'c19bf174cf692694',
|
|
'e49b69c19ef14ad2', 'efbe4786384f25e3', '0fc19dc68b8cd5b5', '240ca1cc77ac9c65',
|
|
'2de92c6f592b0275', '4a7484aa6ea6e483', '5cb0a9dcbd41fbd4', '76f988da831153b5',
|
|
'983e5152ee66dfab', 'a831c66d2db43210', 'b00327c898fb213f', 'bf597fc7beef0ee4',
|
|
'c6e00bf33da88fc2', 'd5a79147930aa725', '06ca6351e003826f', '142929670a0e6e70',
|
|
'27b70a8546d22ffc', '2e1b21385c26c926', '4d2c6dfc5ac42aed', '53380d139d95b3df',
|
|
'650a73548baf63de', '766a0abb3c77b2a8', '81c2c92e47edaee6', '92722c851482353b',
|
|
'a2bfe8a14cf10364', 'a81a664bbc423001', 'c24b8b70d0f89791', 'c76c51a30654be30',
|
|
'd192e819d6ef5218', 'd69906245565a910', 'f40e35855771202a', '106aa07032bbd1b8',
|
|
'19a4c116b8d2d0c8', '1e376c085141ab53', '2748774cdf8eeb99', '34b0bcb5e19b48a8',
|
|
'391c0cb3c5c95a63', '4ed8aa4ae3418acb', '5b9cca4f7763e373', '682e6ff3d6b2b8a3',
|
|
'748f82ee5defb2fc', '78a5636f43172f60', '84c87814a1f0ab72', '8cc702081a6439ec',
|
|
'90befffa23631e28', 'a4506cebde82bde9', 'bef9a3f7b2c67915', 'c67178f2e372532b',
|
|
'ca273eceea26619c', 'd186b8c721c0c207', 'eada7dd6cde0eb1e', 'f57d4f7fee6ed178',
|
|
'06f067aa72176fba', '0a637dc5a2c898a6', '113f9804bef90dae', '1b710b35131c471b',
|
|
'28db77f523047d84', '32caab7b40c72493', '3c9ebe0a15c9bebc', '431d67c49c100d4c',
|
|
'4cc5d4becb3e42b6', '597f299cfc657e2a', '5fcb6fab3ad6faec', '6c44198c4a475817'
|
|
];
|
|
|
|
for ($i = 0; $i < 80; $i++) {
|
|
$k[$i] = new BigInteger($k[$i], 16);
|
|
}
|
|
}
|
|
|
|
// Pre-processing
|
|
$length = strlen($m);
|
|
// to round to nearest 112 mod 128, we'll add 128 - (length + (128 - 112)) % 128
|
|
$m.= str_repeat(chr(0), 128 - (($length + 16) & 0x7F));
|
|
$m[$length] = chr(0x80);
|
|
// we don't support hashing strings 512MB long
|
|
$m.= pack('N4', 0, 0, 0, $length << 3);
|
|
|
|
// Process the message in successive 1024-bit chunks
|
|
$chunks = str_split($m, 128);
|
|
foreach ($chunks as $chunk) {
|
|
$w = [];
|
|
for ($i = 0; $i < 16; $i++) {
|
|
$temp = new BigInteger(Strings::shift($chunk, 8), 256);
|
|
$temp->setPrecision(64);
|
|
$w[] = $temp;
|
|
}
|
|
|
|
// Extend the sixteen 32-bit words into eighty 32-bit words
|
|
for ($i = 16; $i < 80; $i++) {
|
|
$temp = [
|
|
$w[$i - 15]->bitwise_rightRotate(1),
|
|
$w[$i - 15]->bitwise_rightRotate(8),
|
|
$w[$i - 15]->bitwise_rightShift(7)
|
|
];
|
|
$s0 = $temp[0]->bitwise_xor($temp[1]);
|
|
$s0 = $s0->bitwise_xor($temp[2]);
|
|
$temp = [
|
|
$w[$i - 2]->bitwise_rightRotate(19),
|
|
$w[$i - 2]->bitwise_rightRotate(61),
|
|
$w[$i - 2]->bitwise_rightShift(6)
|
|
];
|
|
$s1 = $temp[0]->bitwise_xor($temp[1]);
|
|
$s1 = $s1->bitwise_xor($temp[2]);
|
|
$w[$i] = clone $w[$i - 16];
|
|
$w[$i] = $w[$i]->add($s0);
|
|
$w[$i] = $w[$i]->add($w[$i - 7]);
|
|
$w[$i] = $w[$i]->add($s1);
|
|
}
|
|
|
|
// Initialize hash value for this chunk
|
|
$a = clone $hash[0];
|
|
$b = clone $hash[1];
|
|
$c = clone $hash[2];
|
|
$d = clone $hash[3];
|
|
$e = clone $hash[4];
|
|
$f = clone $hash[5];
|
|
$g = clone $hash[6];
|
|
$h = clone $hash[7];
|
|
|
|
// Main loop
|
|
for ($i = 0; $i < 80; $i++) {
|
|
$temp = [
|
|
$a->bitwise_rightRotate(28),
|
|
$a->bitwise_rightRotate(34),
|
|
$a->bitwise_rightRotate(39)
|
|
];
|
|
$s0 = $temp[0]->bitwise_xor($temp[1]);
|
|
$s0 = $s0->bitwise_xor($temp[2]);
|
|
$temp = [
|
|
$a->bitwise_and($b),
|
|
$a->bitwise_and($c),
|
|
$b->bitwise_and($c)
|
|
];
|
|
$maj = $temp[0]->bitwise_xor($temp[1]);
|
|
$maj = $maj->bitwise_xor($temp[2]);
|
|
$t2 = $s0->add($maj);
|
|
|
|
$temp = [
|
|
$e->bitwise_rightRotate(14),
|
|
$e->bitwise_rightRotate(18),
|
|
$e->bitwise_rightRotate(41)
|
|
];
|
|
$s1 = $temp[0]->bitwise_xor($temp[1]);
|
|
$s1 = $s1->bitwise_xor($temp[2]);
|
|
$temp = [
|
|
$e->bitwise_and($f),
|
|
$g->bitwise_and($e->bitwise_not())
|
|
];
|
|
$ch = $temp[0]->bitwise_xor($temp[1]);
|
|
$t1 = $h->add($s1);
|
|
$t1 = $t1->add($ch);
|
|
$t1 = $t1->add($k[$i]);
|
|
$t1 = $t1->add($w[$i]);
|
|
|
|
$h = clone $g;
|
|
$g = clone $f;
|
|
$f = clone $e;
|
|
$e = $d->add($t1);
|
|
$d = clone $c;
|
|
$c = clone $b;
|
|
$b = clone $a;
|
|
$a = $t1->add($t2);
|
|
}
|
|
|
|
// Add this chunk's hash to result so far
|
|
$hash = [
|
|
$hash[0]->add($a),
|
|
$hash[1]->add($b),
|
|
$hash[2]->add($c),
|
|
$hash[3]->add($d),
|
|
$hash[4]->add($e),
|
|
$hash[5]->add($f),
|
|
$hash[6]->add($g),
|
|
$hash[7]->add($h)
|
|
];
|
|
}
|
|
|
|
// Produce the final hash value (big-endian)
|
|
// (\phpseclib\Crypt\Hash::hash() trims the output for hashes but not for HMACs. as such, we trim the output here)
|
|
$temp = $hash[0]->toBytes() . $hash[1]->toBytes() . $hash[2]->toBytes() . $hash[3]->toBytes() .
|
|
$hash[4]->toBytes() . $hash[5]->toBytes() . $hash[6]->toBytes() . $hash[7]->toBytes();
|
|
|
|
return $temp;
|
|
}
|
|
}
|