mirror of
https://github.com/danog/tgseclib.git
synced 2024-12-13 17:47:33 +01:00
334 lines
10 KiB
PHP
334 lines
10 KiB
PHP
<?php
|
|
|
|
/**
|
|
* Ed25519
|
|
*
|
|
* PHP version 5 and 7
|
|
*
|
|
* @category Crypt
|
|
* @package EC
|
|
* @author Jim Wigginton <terrafrost@php.net>
|
|
* @copyright 2017 Jim Wigginton
|
|
* @license http://www.opensource.org/licenses/mit-license.html MIT License
|
|
*/
|
|
|
|
namespace phpseclib\Crypt\EC\Curves;
|
|
|
|
use phpseclib\Crypt\EC\BaseCurves\TwistedEdwards;
|
|
use phpseclib\Math\BigInteger;
|
|
use phpseclib\Crypt\Hash;
|
|
use phpseclib\Crypt\Random;
|
|
|
|
class Ed25519 extends TwistedEdwards
|
|
{
|
|
const HASH = 'sha512';
|
|
/*
|
|
Per https://tools.ietf.org/html/rfc8032#page-6 EdDSA has several parameters, one of which is b:
|
|
|
|
2. An integer b with 2^(b-1) > p. EdDSA public keys have exactly b
|
|
bits, and EdDSA signatures have exactly 2*b bits. b is
|
|
recommended to be a multiple of 8, so public key and signature
|
|
lengths are an integral number of octets.
|
|
|
|
SIZE corresponds to b
|
|
*/
|
|
const SIZE = 32;
|
|
|
|
public function __construct()
|
|
{
|
|
// 2^255 - 19
|
|
$this->setModulo(new BigInteger('7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED', 16));
|
|
$this->setCoefficients(
|
|
// -1
|
|
new BigInteger('7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC', 16), // a
|
|
// -121665/121666
|
|
new BigInteger('52036CEE2B6FFE738CC740797779E89800700A4D4141D8AB75EB4DCA135978A3', 16) // d
|
|
);
|
|
$this->setBasePoint(
|
|
new BigInteger('216936D3CD6E53FEC0A4E231FDD6DC5C692CC7609525A7B2C9562D608F25D51A', 16),
|
|
new BigInteger('6666666666666666666666666666666666666666666666666666666666666658', 16)
|
|
);
|
|
$this->setOrder(new BigInteger('1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED', 16));
|
|
// algorithm 14.47 from http://cacr.uwaterloo.ca/hac/about/chap14.pdf#page=16
|
|
/*
|
|
$this->setReduction(function($x) {
|
|
$parts = $x->bitwise_split(255);
|
|
$className = $this->className;
|
|
|
|
if (count($parts) > 2) {
|
|
list(, $r) = $x->divide($className::$modulo);
|
|
return $r;
|
|
}
|
|
|
|
$zero = new BigInteger();
|
|
$c = new BigInteger(19);
|
|
|
|
switch (count($parts)) {
|
|
case 2:
|
|
list($qi, $ri) = $parts;
|
|
break;
|
|
case 1:
|
|
$qi = $zero;
|
|
list($ri) = $parts;
|
|
break;
|
|
case 0:
|
|
return $zero;
|
|
}
|
|
$r = $ri;
|
|
|
|
while ($qi->compare($zero) > 0) {
|
|
$temp = $qi->multiply($c)->bitwise_split(255);
|
|
if (count($temp) == 2) {
|
|
list($qi, $ri) = $temp;
|
|
} else {
|
|
$qi = $zero;
|
|
list($ri) = $temp;
|
|
}
|
|
$r = $r->add($ri);
|
|
}
|
|
|
|
while ($r->compare($className::$modulo) > 0) {
|
|
$r = $r->subtract($className::$modulo);
|
|
}
|
|
return $r;
|
|
});
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* Recover X from Y
|
|
*
|
|
* Implements steps 2-4 at https://tools.ietf.org/html/rfc8032#section-5.1.3
|
|
*
|
|
* Used by EC\Keys\Common.php
|
|
*
|
|
* @param BigInteger $x
|
|
* @param boolean $sign
|
|
* @return object[]
|
|
*/
|
|
public function recoverX(BigInteger $y, $sign)
|
|
{
|
|
$y = $this->factory->newInteger($y);
|
|
|
|
$y2 = $y->multiply($y);
|
|
$u = $y2->subtract($this->one);
|
|
$v = $this->d->multiply($y2)->add($this->one);
|
|
$x2 = $u->divide($v);
|
|
if ($x2->equals($this->zero)) {
|
|
if ($sign) {
|
|
throw new \RuntimeException('Unable to recover X coordinate (x2 = 0)');
|
|
}
|
|
return clone $this->zero;
|
|
}
|
|
// find the square root
|
|
/* we don't do $x2->squareRoot() because, quoting from
|
|
https://tools.ietf.org/html/rfc8032#section-5.1.1:
|
|
|
|
"For point decoding or "decompression", square roots modulo p are
|
|
needed. They can be computed using the Tonelli-Shanks algorithm or
|
|
the special case for p = 5 (mod 8). To find a square root of a,
|
|
first compute the candidate root x = a^((p+3)/8) (mod p)."
|
|
*/
|
|
$exp = $this->getModulo()->add(new BigInteger(3));
|
|
$exp = $exp->bitwise_rightShift(3);
|
|
$x = $x2->pow($exp);
|
|
|
|
// If v x^2 = -u (mod p), set x <-- x * 2^((p-1)/4), which is a square root.
|
|
if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
|
|
$temp = $this->getModulo()->subtract(new BigInteger(1));
|
|
$temp = $temp->bitwise_rightShift(2);
|
|
$temp = $this->two->pow($temp);
|
|
$x = $x->multiply($temp);
|
|
if (!$x->multiply($x)->subtract($x2)->equals($this->zero)) {
|
|
throw new \RuntimeException('Unable to recover X coordinate');
|
|
}
|
|
}
|
|
if ($x->isOdd() != $sign) {
|
|
$x = $x->negate();
|
|
}
|
|
|
|
return [$x, $y];
|
|
}
|
|
|
|
/**
|
|
* Extract Secret Scalar
|
|
*
|
|
* Implements steps 1-3 at https://tools.ietf.org/html/rfc8032#section-5.1.5
|
|
*
|
|
* Used by the various key handlers
|
|
*
|
|
* @param string $str
|
|
* @return \phpseclib\Math\PrimeField\Integer
|
|
*/
|
|
public function extractSecret($str)
|
|
{
|
|
if (strlen($str) != 32) {
|
|
throw new \LengthException('Private Key should be 32-bytes long');
|
|
}
|
|
// 1. Hash the 32-byte private key using SHA-512, storing the digest in
|
|
// a 64-octet large buffer, denoted h. Only the lower 32 bytes are
|
|
// used for generating the public key.
|
|
$hash = new Hash('sha512');
|
|
$h = $hash->hash($str);
|
|
$h = substr($h, 0, 32);
|
|
// 2. Prune the buffer: The lowest three bits of the first octet are
|
|
// cleared, the highest bit of the last octet is cleared, and the
|
|
// second highest bit of the last octet is set.
|
|
$h[0] = $h[0] & chr(0xF8);
|
|
$h = strrev($h);
|
|
$h[0] = ($h[0] & chr(0x3F)) | chr(0x40);
|
|
// 3. Interpret the buffer as the little-endian integer, forming a
|
|
// secret scalar s.
|
|
$dA = new BigInteger($h, 256);
|
|
$dA = $this->factory->newInteger($dA);
|
|
|
|
$dA->secret = $str;
|
|
return $dA;
|
|
}
|
|
|
|
/**
|
|
* Encode a point as a string
|
|
*
|
|
* @param string $str
|
|
* @return string
|
|
*/
|
|
public function encodePoint($point)
|
|
{
|
|
list($x, $y) = $point;
|
|
$y = $y->toBytes();
|
|
$y[0] = $y[0] & chr(0x7F);
|
|
if ($x->isOdd()) {
|
|
$y[0] = $y[0] | chr(0x80);
|
|
}
|
|
$y = strrev($y);
|
|
|
|
return $y;
|
|
}
|
|
|
|
/**
|
|
* Creates a random scalar multiplier
|
|
*
|
|
* @return \phpseclib\Math\PrimeField\Integer
|
|
*/
|
|
public function createRandomMultiplier()
|
|
{
|
|
return $this->extractSecret(Random::string(32));
|
|
}
|
|
|
|
/**
|
|
* Converts an affine point to an extended homogeneous coordinate
|
|
*
|
|
* From https://tools.ietf.org/html/rfc8032#section-5.1.4 :
|
|
*
|
|
* A point (x,y) is represented in extended homogeneous coordinates (X, Y, Z, T),
|
|
* with x = X/Z, y = Y/Z, x * y = T/Z.
|
|
*
|
|
* @return \phpseclib\Math\PrimeField\Integer[]
|
|
*/
|
|
public function convertToInternal(array $p)
|
|
{
|
|
if (empty($p)) {
|
|
return [clone $this->zero, clone $this->one, clone $this->one, clone $this->zero];
|
|
}
|
|
|
|
if (isset($p[2])) {
|
|
return $p;
|
|
}
|
|
|
|
$p[2] = clone $this->one;
|
|
$p[3] = $p[0]->multiply($p[1]);
|
|
|
|
return $p;
|
|
}
|
|
|
|
/**
|
|
* Doubles a point on a curve
|
|
*
|
|
* @return FiniteField[]
|
|
*/
|
|
public function doublePoint(array $p)
|
|
{
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
|
|
if (!count($p)) {
|
|
return [];
|
|
}
|
|
|
|
if (!isset($p[2])) {
|
|
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
|
|
}
|
|
|
|
// from https://tools.ietf.org/html/rfc8032#page-12
|
|
|
|
list($x1, $y1, $z1, $t1) = $p;
|
|
|
|
$a = $x1->multiply($x1);
|
|
$b = $y1->multiply($y1);
|
|
$c = $this->two->multiply($z1)->multiply($z1);
|
|
$h = $a->add($b);
|
|
$temp = $x1->add($y1);
|
|
$e = $h->subtract($temp->multiply($temp));
|
|
$g = $a->subtract($b);
|
|
$f = $c->add($g);
|
|
|
|
$x3 = $e->multiply($f);
|
|
$y3 = $g->multiply($h);
|
|
$t3 = $e->multiply($h);
|
|
$z3 = $f->multiply($g);
|
|
|
|
return [$x3, $y3, $z3, $t3];
|
|
}
|
|
|
|
/**
|
|
* Adds two points on the curve
|
|
*
|
|
* @return FiniteField[]
|
|
*/
|
|
public function addPoint(array $p, array $q)
|
|
{
|
|
if (!isset($this->factory)) {
|
|
throw new \RuntimeException('setModulo needs to be called before this method');
|
|
}
|
|
|
|
if (!count($p) || !count($q)) {
|
|
if (count($q)) {
|
|
return $q;
|
|
}
|
|
if (count($p)) {
|
|
return $p;
|
|
}
|
|
return [];
|
|
}
|
|
|
|
if (!isset($p[2]) || !isset($q[2])) {
|
|
throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa');
|
|
}
|
|
|
|
if ($p[0]->equals($q[0])) {
|
|
return !$p[1]->equals($q[1]) ? [] : $this->doublePoint($p);
|
|
}
|
|
|
|
// from https://tools.ietf.org/html/rfc8032#page-12
|
|
|
|
list($x1, $y1, $z1, $t1) = $p;
|
|
list($x2, $y2, $z2, $t2) = $q;
|
|
|
|
$a = $y1->subtract($x1)->multiply($y2->subtract($x2));
|
|
$b = $y1->add($x1)->multiply($y2->add($x2));
|
|
$c = $t1->multiply($this->two)->multiply($this->d)->multiply($t2);
|
|
$d = $z1->multiply($this->two)->multiply($z2);
|
|
$e = $b->subtract($a);
|
|
$f = $d->subtract($c);
|
|
$g = $d->add($c);
|
|
$h = $b->add($a);
|
|
|
|
$x3 = $e->multiply($f);
|
|
$y3 = $g->multiply($h);
|
|
$t3 = $e->multiply($h);
|
|
$z3 = $f->multiply($g);
|
|
|
|
return [$x3, $y3, $z3, $t3];
|
|
}
|
|
} |