mirror of
https://github.com/danog/ton.git
synced 2024-12-12 09:09:37 +01:00
305 lines
10 KiB
C++
305 lines
10 KiB
C++
|
/*
|
||
|
This file is part of TON Blockchain source code.
|
||
|
|
||
|
TON Blockchain is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU General Public License
|
||
|
as published by the Free Software Foundation; either version 2
|
||
|
of the License, or (at your option) any later version.
|
||
|
|
||
|
TON Blockchain is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with TON Blockchain. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
In addition, as a special exception, the copyright holders give permission
|
||
|
to link the code of portions of this program with the OpenSSL library.
|
||
|
You must obey the GNU General Public License in all respects for all
|
||
|
of the code used other than OpenSSL. If you modify file(s) with this
|
||
|
exception, you may extend this exception to your version of the file(s),
|
||
|
but you are not obligated to do so. If you do not wish to do so, delete this
|
||
|
exception statement from your version. If you delete this exception statement
|
||
|
from all source files in the program, then also delete it here.
|
||
|
|
||
|
Copyright 2017-2019 Telegram Systems LLP
|
||
|
*/
|
||
|
#include "td/utils/benchmark.h"
|
||
|
#include "td/utils/format.h"
|
||
|
#include "td/utils/Random.h"
|
||
|
#include "td/utils/Time.h"
|
||
|
#include "td/utils/tests.h"
|
||
|
|
||
|
#include "td/fec/fec.h"
|
||
|
#include "td/fec/algebra/Octet.h"
|
||
|
#include "td/fec/algebra/GaussianElimination.h"
|
||
|
#include "td/fec/algebra/Simd.h"
|
||
|
#include <cstdio>
|
||
|
|
||
|
template <class Simd, size_t size = 256>
|
||
|
class Simd_gf256_from_gf2 : public td::Benchmark {
|
||
|
public:
|
||
|
explicit Simd_gf256_from_gf2(std::string description) : description_(std::move(description)) {
|
||
|
for (size_t i = 0; i < size; i++) {
|
||
|
src[i] = td::uint8(td::Random::fast(0, 255));
|
||
|
}
|
||
|
}
|
||
|
std::string get_description() const override {
|
||
|
return PSTRING() << "gf256_from_gf2 " << description_ << " " << size;
|
||
|
}
|
||
|
void run(int n) override {
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
Simd::gf256_from_gf2(dest, src, size);
|
||
|
}
|
||
|
td::do_not_optimize_away(dest[0]);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
alignas(32) td::uint8 dest[8 * size];
|
||
|
alignas(32) td::uint8 src[size];
|
||
|
std::string description_;
|
||
|
};
|
||
|
template <class Simd, size_t size = 256 * 8>
|
||
|
class Simd_gf256_add : public td::Benchmark {
|
||
|
public:
|
||
|
explicit Simd_gf256_add(std::string description) : description_(std::move(description)) {
|
||
|
for (size_t i = 0; i < size; i++) {
|
||
|
src[i] = td::uint8(td::Random::fast(0, 255));
|
||
|
}
|
||
|
}
|
||
|
std::string get_description() const override {
|
||
|
return PSTRING() << "gf256_add " << description_ << " " << size;
|
||
|
}
|
||
|
void run(int n) override {
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
Simd::gf256_add(dest, src, size);
|
||
|
}
|
||
|
td::do_not_optimize_away(dest[0]);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
alignas(32) td::uint8 dest[size];
|
||
|
alignas(32) td::uint8 src[size];
|
||
|
std::string description_;
|
||
|
};
|
||
|
|
||
|
template <class Simd, size_t size = 256 * 8>
|
||
|
class Simd_gf256_add_mul : public td::Benchmark {
|
||
|
public:
|
||
|
explicit Simd_gf256_add_mul(std::string description) : description_(std::move(description)) {
|
||
|
for (size_t i = 0; i < size; i++) {
|
||
|
src[i] = td::uint8(td::Random::fast(0, 255));
|
||
|
}
|
||
|
}
|
||
|
std::string get_description() const override {
|
||
|
return PSTRING() << "gf256_add_mul " << description_ << " " << size;
|
||
|
}
|
||
|
void run(int n) override {
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
Simd::gf256_add_mul(dest, src, 211, size);
|
||
|
}
|
||
|
td::do_not_optimize_away(dest[0]);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
alignas(32) td::uint8 dest[size];
|
||
|
alignas(32) td::uint8 src[size];
|
||
|
std::string description_;
|
||
|
};
|
||
|
|
||
|
template <class Simd, size_t size = 256 * 8>
|
||
|
class Simd_gf256_mul : public td::Benchmark {
|
||
|
public:
|
||
|
explicit Simd_gf256_mul(std::string description) : description_(std::move(description)) {
|
||
|
for (size_t i = 0; i < size; i++) {
|
||
|
src[i] = td::uint8(td::Random::fast(0, 255));
|
||
|
}
|
||
|
}
|
||
|
std::string get_description() const override {
|
||
|
return PSTRING() << "gf256_mul " << description_ << " " << size;
|
||
|
}
|
||
|
void run(int n) override {
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
Simd::gf256_mul(src, 211, size);
|
||
|
}
|
||
|
td::do_not_optimize_away(dest[0]);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
alignas(32) td::uint8 dest[size];
|
||
|
alignas(32) td::uint8 src[size];
|
||
|
std::string description_;
|
||
|
};
|
||
|
|
||
|
class GaussBenchmark : public td::Benchmark {
|
||
|
public:
|
||
|
GaussBenchmark(size_t n) : n_(n) {
|
||
|
for (size_t i = 0; i < A_.rows(); i++) {
|
||
|
for (size_t j = 0; j < A_.cols(); j++) {
|
||
|
A_.set(i, j, td::Octet(td::uint8(td::Random::fast_uint32())));
|
||
|
}
|
||
|
}
|
||
|
for (size_t i = 0; i < D_.rows(); i++) {
|
||
|
for (size_t j = 0; j < D_.cols(); j++) {
|
||
|
D_.set(i, j, td::Octet(td::uint8(td::Random::fast_uint32())));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
std::string get_description() const override {
|
||
|
return PSTRING() << "GaussBenchmark " << n_;
|
||
|
}
|
||
|
|
||
|
void run(int n) override {
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
auto A = A_.copy();
|
||
|
auto D = D_.copy();
|
||
|
td::GaussianElimination::run(std::move(A), std::move(D));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
size_t n_;
|
||
|
td::MatrixGF256 A_{n_, n_};
|
||
|
td::MatrixGF256 D_{n_, n_ / 3};
|
||
|
};
|
||
|
|
||
|
class SolverBenchmark : public td::Benchmark {
|
||
|
public:
|
||
|
SolverBenchmark(size_t data_size, size_t symbol_size) {
|
||
|
data_ = td::BufferSlice(td::rand_string('a', 'z', td::narrow_cast<int>(data_size)));
|
||
|
symbol_size_ = symbol_size;
|
||
|
}
|
||
|
std::string get_description() const override {
|
||
|
return PSTRING() << "SolverBenchmark " << data_.size() << " " << symbol_size_;
|
||
|
}
|
||
|
|
||
|
void run(int n) override {
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
td::fec::RaptorQEncoder::create(data_.clone(), symbol_size_);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
td::BufferSlice data_;
|
||
|
size_t symbol_size_;
|
||
|
};
|
||
|
|
||
|
template <class Encoder, class Decoder>
|
||
|
class FecBenchmark : public td::Benchmark {
|
||
|
public:
|
||
|
FecBenchmark(td::uint32 symbol_size, td::uint32 symbols_count, std::string name)
|
||
|
: symbol_size_(symbol_size), symbols_count_(symbols_count), name_(std::move(name)) {
|
||
|
data_ = td::BufferSlice(symbols_count_ * symbol_size_);
|
||
|
}
|
||
|
std::string get_description() const override {
|
||
|
return PSTRING() << "FecBenchmark " << name_ << " " << td::tag("symbols_count", symbols_count_)
|
||
|
<< td::tag("symbol_size", symbol_size_);
|
||
|
}
|
||
|
void run(int n) override {
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
auto encoder = Encoder::create(data_.clone(), symbol_size_);
|
||
|
|
||
|
std::vector<td::fec::Symbol> symbols;
|
||
|
auto parameters = encoder->get_parameters();
|
||
|
auto decoder = Decoder::create(parameters);
|
||
|
|
||
|
size_t sent_symbols = 0;
|
||
|
for (td::uint32 j = 0; j < data_.size() / symbol_size_ * 20; j++) {
|
||
|
if (td::Random::fast(0, 5) != 0) {
|
||
|
if (encoder->get_info().ready_symbol_count <= j) {
|
||
|
encoder->prepare_more_symbols();
|
||
|
}
|
||
|
decoder->add_symbol(encoder->gen_symbol(j));
|
||
|
sent_symbols++;
|
||
|
if (decoder->may_try_decode()) {
|
||
|
auto res = decoder->try_decode(false);
|
||
|
if (res.is_ok()) {
|
||
|
if (sent_symbols > static_cast<size_t>(static_cast<double>(parameters.symbols_count) * 1.05)) {
|
||
|
LOG(ERROR) << sent_symbols << " / " << parameters.symbols_count;
|
||
|
}
|
||
|
//ASSERT_EQ(res.data.as_slice(), data);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
size_t symbol_size_;
|
||
|
size_t symbols_count_;
|
||
|
std::string name_;
|
||
|
td::BufferSlice data_;
|
||
|
};
|
||
|
|
||
|
template <template <class T, size_t size> class O, size_t size = 256 * 8>
|
||
|
void bench_simd() {
|
||
|
bench(O<td::Simd_null, size>("baseline"));
|
||
|
#if TD_SSSE3
|
||
|
bench(O<td::Simd_sse, size>("SSE"));
|
||
|
#endif
|
||
|
#if TD_AVX2
|
||
|
bench(O<td::Simd_avx, size>("AVX"));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void run_encode_benchmark() {
|
||
|
constexpr size_t TARGET_TOTAL_BYTES = 100 * 1024 * 1024;
|
||
|
constexpr size_t SYMBOLS_COUNT[11] = {10, 100, 250, 500, 1000, 2000, 4000, 10000, 20000, 40000, 56403};
|
||
|
|
||
|
td::uint64 junk = 0;
|
||
|
for (int it = 0; it < 11; it++) {
|
||
|
//for (int it = 0; true;) {
|
||
|
auto symbol_count = SYMBOLS_COUNT[it];
|
||
|
auto symbol_size = 512;
|
||
|
auto elements = symbol_count * symbol_size;
|
||
|
td::BufferSlice data(elements);
|
||
|
|
||
|
td::Random::Xorshift128plus rnd(123);
|
||
|
for (auto &c : data.as_slice()) {
|
||
|
c = static_cast<td::uint8>(rnd());
|
||
|
}
|
||
|
|
||
|
double now = td::Time::now();
|
||
|
auto iterations = TARGET_TOTAL_BYTES / elements;
|
||
|
for (size_t i = 0; i < iterations; i++) {
|
||
|
auto encoder = td::fec::RaptorQEncoder::create(data.clone(), symbol_size);
|
||
|
encoder->prepare_more_symbols();
|
||
|
junk += encoder->gen_symbol(10000000).data.as_slice()[0];
|
||
|
}
|
||
|
double elapsed = td::Time::now() - now;
|
||
|
double throughput = ((double)elements * (double)iterations * 8.0) / 1024 / 1024 / elapsed;
|
||
|
fprintf(stderr, "symbol count = %d, encoded %d MB in %.3lfsecs, throughtput: %.1lfMbit/s\n", (int)symbol_count,
|
||
|
(int)(elements * iterations / 1024 / 1024), elapsed, throughput);
|
||
|
}
|
||
|
td::do_not_optimize_away(junk);
|
||
|
}
|
||
|
|
||
|
int main(void) {
|
||
|
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
|
||
|
run_encode_benchmark();
|
||
|
bench_simd<Simd_gf256_mul, 32>();
|
||
|
bench_simd<Simd_gf256_add_mul, 32>();
|
||
|
bench_simd<Simd_gf256_add, 32>();
|
||
|
bench_simd<Simd_gf256_from_gf2, 32>();
|
||
|
bench_simd<Simd_gf256_mul>();
|
||
|
bench_simd<Simd_gf256_add_mul>();
|
||
|
bench_simd<Simd_gf256_add>();
|
||
|
bench_simd<Simd_gf256_from_gf2, 256>();
|
||
|
bench(GaussBenchmark(15));
|
||
|
bench(GaussBenchmark(1000));
|
||
|
|
||
|
bench(FecBenchmark<td::fec::RaptorQEncoder, td::fec::RaptorQDecoder>(512, 20, "RaptorQ"));
|
||
|
|
||
|
bench(FecBenchmark<td::fec::RaptorQEncoder, td::fec::RaptorQDecoder>(200, 1000, "RaptorQ"));
|
||
|
bench(FecBenchmark<td::fec::OnlineEncoder, td::fec::OnlineDecoder>(200, 1000, "Online"));
|
||
|
for (int symbol_size = 32; symbol_size <= 8192; symbol_size *= 2) {
|
||
|
bench(FecBenchmark<td::fec::OnlineEncoder, td::fec::OnlineDecoder>(symbol_size, 50000, "Online"));
|
||
|
bench(FecBenchmark<td::fec::RaptorQEncoder, td::fec::RaptorQDecoder>(symbol_size, 50000, "RaptorQ"));
|
||
|
}
|
||
|
|
||
|
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(WARNING));
|
||
|
bench(SolverBenchmark(50000 * 200, 200));
|
||
|
return 0;
|
||
|
}
|