/* This file is part of TON Blockchain Library. TON Blockchain Library is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. TON Blockchain Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with TON Blockchain Library. If not, see . Copyright 2017-2019 Telegram Systems LLP */ #include "func.h" #include "td/utils/crypto.h" #include namespace sym { int compute_symbol_subclass(std::string str) { using funC::IdSc; if (str.size() < 2) { return IdSc::undef; } else if (str[0] == '.') { return IdSc::dotid; } else if (str[0] == '~') { return IdSc::tildeid; } else { return IdSc::undef; } } } // namespace sym namespace funC { using namespace std::literals::string_literals; using src::Lexer; using sym::symbols; using td::Ref; inline bool is_dot_ident(sym_idx_t idx) { return symbols.get_subclass(idx) == IdSc::dotid; } inline bool is_tilde_ident(sym_idx_t idx) { return symbols.get_subclass(idx) == IdSc::tildeid; } inline bool is_special_ident(sym_idx_t idx) { return symbols.get_subclass(idx) != IdSc::undef; } /* * * PARSE SOURCE * */ // TE ::= TA | TA -> TE // TA ::= int | ... | cont | var | _ | () | ( TE { , TE } ) TypeExpr* parse_type(Lexer& lex); TypeExpr* parse_type1(Lexer& lex) { switch (lex.tp()) { case _Int: lex.next(); return TypeExpr::new_atomic(_Int); case _Cell: lex.next(); return TypeExpr::new_atomic(_Cell); case _Slice: lex.next(); return TypeExpr::new_atomic(_Slice); case _Builder: lex.next(); return TypeExpr::new_atomic(_Builder); case _Cont: lex.next(); return TypeExpr::new_atomic(_Cont); case _Tuple: lex.next(); return TypeExpr::new_atomic(_Tuple); case _Var: case '_': lex.next(); return TypeExpr::new_hole(); } lex.expect('('); if (lex.tp() == ')') { lex.next(); return TypeExpr::new_unit(); } auto t1 = parse_type(lex); if (lex.tp() != ',') { lex.expect(')'); return t1; } std::vector tlist{1, t1}; while (lex.tp() == ',') { lex.next(); tlist.push_back(parse_type(lex)); } lex.expect(')'); return TypeExpr::new_tensor(std::move(tlist)); } TypeExpr* parse_type(Lexer& lex) { auto res = parse_type1(lex); if (lex.tp() == _Mapsto) { lex.next(); auto to = parse_type(lex); return TypeExpr::new_map(res, to); } else { return res; } } FormalArg parse_formal_arg(Lexer& lex, int fa_idx) { TypeExpr* arg_type = 0; SrcLocation loc = lex.cur().loc; if (lex.tp() == '_') { lex.next(); if (lex.tp() == ',' || lex.tp() == ')') { return std::make_tuple(TypeExpr::new_hole(), (SymDef*)nullptr, loc); } arg_type = TypeExpr::new_hole(); loc = lex.cur().loc; } else if (lex.tp() != _Ident) { arg_type = parse_type(lex); } else { arg_type = TypeExpr::new_hole(); } if (lex.tp() == '_' || lex.tp() == ',' || lex.tp() == ')') { if (lex.tp() == '_') { loc = lex.cur().loc; lex.next(); } return std::make_tuple(arg_type, (SymDef*)nullptr, loc); } if (lex.tp() != _Ident) { lex.expect(_Ident, "formal parameter name"); } loc = lex.cur().loc; SymDef* new_sym_def = sym::define_symbol(lex.cur().val, true, loc); if (new_sym_def->value) { lex.cur().error_at("redefined formal parameter `", "`"); } new_sym_def->value = new SymVal{SymVal::_Param, fa_idx, arg_type}; lex.next(); return std::make_tuple(arg_type, new_sym_def, loc); } FormalArgList parse_formal_args(Lexer& lex) { FormalArgList args; lex.expect('(', "formal argument list"); if (lex.tp() == ')') { lex.next(); return args; } int fa_idx = 0; args.push_back(parse_formal_arg(lex, fa_idx++)); while (lex.tp() == ',') { lex.next(); args.push_back(parse_formal_arg(lex, fa_idx++)); } lex.expect(')'); return args; } TypeExpr* extract_total_arg_type(const FormalArgList& arg_list) { if (arg_list.empty()) { return TypeExpr::new_unit(); } if (arg_list.size() == 1) { return std::get<0>(arg_list[0]); } std::vector type_list; for (auto& x : arg_list) { type_list.push_back(std::get<0>(x)); } return TypeExpr::new_tensor(std::move(type_list)); } SymValCodeFunc* make_new_glob_func(SymDef* func_sym, TypeExpr* func_type, bool impure = false) { SymValCodeFunc* res = new SymValCodeFunc{glob_func_cnt, func_type, impure}; func_sym->value = res; glob_func.push_back(func_sym); glob_func_cnt++; return res; } bool check_global_func(const Lexem& cur, sym_idx_t func_name = 0) { if (!func_name) { func_name = cur.val; } SymDef* def = sym::lookup_symbol(func_name); if (!def) { cur.loc.show_error(std::string{"undefined function `"} + symbols.get_name(func_name) + "`, defining a global function of unknown type"); def = sym::define_global_symbol(func_name, 0, cur.loc); assert(def && "cannot define global function"); ++undef_func_cnt; make_new_glob_func(def, TypeExpr::new_hole()); // was: ... ::new_func() return true; } SymVal* val = dynamic_cast(def->value); if (!val) { cur.error(std::string{"symbol `"} + symbols.get_name(func_name) + "` has no value and no type"); return false; } else if (!val->get_type()) { cur.error(std::string{"symbol `"} + symbols.get_name(func_name) + "` has no type, possibly not a function"); return false; } else { return true; } } Expr* parse_expr(Lexer& lex, CodeBlob& code, bool nv = false); // parse ( E { , E } ) | () | id | num | _ Expr* parse_expr100(Lexer& lex, CodeBlob& code, bool nv) { if (lex.tp() == '(') { SrcLocation loc{lex.cur().loc}; lex.next(); if (lex.tp() == ')') { lex.next(); Expr* res = new Expr{Expr::_Tuple, {}}; res->flags = Expr::_IsRvalue; res->here = loc; res->e_type = TypeExpr::new_unit(); return res; } Expr* res = parse_expr(lex, code, nv); if (lex.tp() != ',') { lex.expect(')'); return res; } std::vector type_list; type_list.push_back(res->e_type); int f = res->flags; res = new Expr{Expr::_Tuple, {res}}; while (lex.tp() == ',') { lex.next(); auto x = parse_expr(lex, code, nv); res->pb_arg(x); if ((f ^ x->flags) & Expr::_IsType) { lex.cur().error("mixing type and non-type expressions inside the same tuple"); } f &= x->flags; type_list.push_back(x->e_type); } res->here = loc; res->flags = f; res->e_type = TypeExpr::new_tensor(std::move(type_list)); lex.expect(')'); return res; } int t = lex.tp(); if (t == Lexem::Number) { Expr* res = new Expr{Expr::_Const, lex.cur().loc}; res->flags = Expr::_IsRvalue; res->intval = td::string_to_int256(lex.cur().str); if (res->intval.is_null()) { lex.cur().error_at("invalid integer constant `", "`"); } res->e_type = TypeExpr::new_atomic(_Int); lex.next(); return res; } if (t == '_') { Expr* res = new Expr{Expr::_Hole, lex.cur().loc}; res->val = -1; res->flags = (Expr::_IsLvalue | Expr::_IsHole | Expr::_IsNewVar); res->e_type = TypeExpr::new_hole(); lex.next(); return res; } if (t == _Var) { Expr* res = new Expr{Expr::_Type, lex.cur().loc}; res->flags = Expr::_IsType; res->e_type = TypeExpr::new_hole(); lex.next(); return res; } if (t == _Int || t == _Cell || t == _Slice || t == _Builder || t == _Cont || t == _Type) { Expr* res = new Expr{Expr::_Type, lex.cur().loc}; res->flags = Expr::_IsType; res->e_type = TypeExpr::new_atomic(t); lex.next(); return res; } if (t == _Ident) { Expr* res = new Expr{Expr::_Var, lex.cur().loc}; if (nv) { res->val = ~lex.cur().val; res->e_type = TypeExpr::new_hole(); res->flags = Expr::_IsLvalue | Expr::_IsNewVar; // std::cerr << "defined new variable " << lex.cur().str << " : " << res->e_type << std::endl; } else { res->sym = sym::lookup_symbol(lex.cur().val); if (!res->sym) { check_global_func(lex.cur()); res->sym = sym::lookup_symbol(lex.cur().val); } SymVal* val = nullptr; if (res->sym) { val = dynamic_cast(res->sym->value); } if (!val) { lex.cur().error_at("undefined identifier `", "`"); } else if (val->type == SymVal::_Func) { res->e_type = val->get_type(); res->cls = Expr::_Glob; } else if (val->idx < 0) { lex.cur().error_at("accessing variable `", "` being defined"); } else { res->val = val->idx; res->e_type = val->get_type(); // std::cerr << "accessing variable " << lex.cur().str << " : " << res->e_type << std::endl; } // std::cerr << "accessing symbol " << lex.cur().str << " : " << res->e_type << (val->impure ? " (impure)" : " (pure)") << std::endl; res->flags = Expr::_IsLvalue | Expr::_IsRvalue | (val->impure ? Expr::_IsImpure : 0); } res->deduce_type(lex.cur()); lex.next(); return res; } lex.expect(Lexem::Ident); return nullptr; } Expr* make_func_apply(Expr* fun, Expr* x) { Expr* res; if (fun->cls == Expr::_Glob) { if (x->cls == Expr::_Tuple) { res = new Expr{Expr::_Apply, fun->sym, x->args}; } else { res = new Expr{Expr::_Apply, fun->sym, {x}}; } res->flags = Expr::_IsRvalue | (fun->flags & Expr::_IsImpure); } else { res = new Expr{Expr::_VarApply, {fun, x}}; res->flags = Expr::_IsRvalue; } return res; } // parse E { E } Expr* parse_expr90(Lexer& lex, CodeBlob& code, bool nv) { Expr* res = parse_expr100(lex, code, nv); while (lex.tp() == '(' || (lex.tp() == _Ident && !is_special_ident(lex.cur().val))) { if (res->is_type()) { Expr* x = parse_expr100(lex, code, true); x->chk_lvalue(lex.cur()); // chk_lrvalue() ? TypeExpr* tp = res->e_type; delete res; res = new Expr{Expr::_TypeApply, {x}}; res->e_type = tp; res->here = lex.cur().loc; try { unify(res->e_type, x->e_type); } catch (UnifyError& ue) { std::ostringstream os; os << "cannot transform expression of type " << x->e_type << " to explicitly requested type " << res->e_type << ": " << ue; lex.cur().error(os.str()); } res->flags = x->flags; } else { Expr* x = parse_expr100(lex, code, false); x->chk_rvalue(lex.cur()); res = make_func_apply(res, x); res->here = lex.cur().loc; res->deduce_type(lex.cur()); } } return res; } // parse E { .method E | ~method E } Expr* parse_expr80(Lexer& lex, CodeBlob& code, bool nv) { Expr* res = parse_expr90(lex, code, nv); while (lex.tp() == _Ident && is_special_ident(lex.cur().val)) { auto modify = is_tilde_ident(lex.cur().val); auto obj = res; if (modify) { obj->chk_lvalue(lex.cur()); } else { obj->chk_rvalue(lex.cur()); } auto loc = lex.cur().loc; auto name = lex.cur().val; auto sym = sym::lookup_symbol(name); if (!sym || !dynamic_cast(sym->value)) { auto name1 = symbols.lookup(lex.cur().str.substr(1)); if (name1) { auto sym1 = sym::lookup_symbol(name1); if (sym1 && dynamic_cast(sym1->value)) { name = name1; sym = sym1; } } } check_global_func(lex.cur(), name); if (verbosity >= 2) { std::cerr << "using symbol `" << symbols.get_name(name) << "` for method call of " << lex.cur().str << std::endl; } sym = sym::lookup_symbol(name); SymValFunc* val = sym ? dynamic_cast(sym->value) : nullptr; if (!val) { lex.cur().error_at("undefined method identifier `", "`"); } lex.next(); auto x = parse_expr100(lex, code, false); x->chk_rvalue(lex.cur()); if (x->cls == Expr::_Tuple) { res = new Expr{Expr::_Apply, name, {obj}}; res->args.insert(res->args.end(), x->args.begin(), x->args.end()); } else { res = new Expr{Expr::_Apply, name, {obj, x}}; } res->here = loc; res->flags = Expr::_IsRvalue | (val->impure ? Expr::_IsImpure : 0); res->deduce_type(lex.cur()); if (modify) { // FIXME (use _LetFirst instead of _Letop) auto tmp = res; res = new Expr{Expr::_LetFirst, {obj->copy(), tmp}}; res->here = loc; res->flags = tmp->flags; res->set_val(name); res->deduce_type(lex.cur()); } } return res; } // parse [ ~ ] E Expr* parse_expr75(Lexer& lex, CodeBlob& code, bool nv) { if (lex.tp() == '~') { sym_idx_t name = symbols.lookup_add("~_"); check_global_func(lex.cur(), name); SrcLocation loc{lex.cur().loc}; lex.next(); auto x = parse_expr80(lex, code, false); x->chk_rvalue(lex.cur()); auto res = new Expr{Expr::_Apply, name, {x}}; res->here = loc; res->set_val('~'); res->flags = Expr::_IsRvalue; res->deduce_type(lex.cur()); return res; } else { return parse_expr80(lex, code, nv); } } // parse E { (* | / | % | /% ) E } Expr* parse_expr30(Lexer& lex, CodeBlob& code, bool nv) { Expr* res = parse_expr75(lex, code, nv); while (lex.tp() == '*' || lex.tp() == '/' || lex.tp() == '%' || lex.tp() == _DivMod || lex.tp() == _DivC || lex.tp() == _DivR || lex.tp() == '&') { res->chk_rvalue(lex.cur()); int t = lex.tp(); sym_idx_t name = symbols.lookup_add(std::string{"_"} + lex.cur().str + "_"); SrcLocation loc{lex.cur().loc}; check_global_func(lex.cur(), name); lex.next(); auto x = parse_expr75(lex, code, false); x->chk_rvalue(lex.cur()); res = new Expr{Expr::_Apply, name, {res, x}}; res->here = loc; res->set_val(t); res->flags = Expr::_IsRvalue; res->deduce_type(lex.cur()); } return res; } // parse [-] E { (+ | - | `|` ) E } Expr* parse_expr20(Lexer& lex, CodeBlob& code, bool nv) { Expr* res; int t = lex.tp(); if (t == '-') { sym_idx_t name = symbols.lookup_add("-_"); check_global_func(lex.cur(), name); SrcLocation loc{lex.cur().loc}; lex.next(); auto x = parse_expr30(lex, code, false); x->chk_rvalue(lex.cur()); res = new Expr{Expr::_Apply, name, {x}}; res->here = loc; res->set_val(t); res->flags = Expr::_IsRvalue; res->deduce_type(lex.cur()); } else { res = parse_expr30(lex, code, nv); } while (lex.tp() == '-' || lex.tp() == '+' || lex.tp() == '|') { res->chk_rvalue(lex.cur()); t = lex.tp(); sym_idx_t name = symbols.lookup_add(std::string{"_"} + lex.cur().str + "_"); check_global_func(lex.cur(), name); SrcLocation loc{lex.cur().loc}; lex.next(); auto x = parse_expr30(lex, code, false); x->chk_rvalue(lex.cur()); res = new Expr{Expr::_Apply, name, {res, x}}; res->here = loc; res->set_val(t); res->flags = Expr::_IsRvalue; res->deduce_type(lex.cur()); } return res; } // parse E { ( << | >> | >>~ | >>^ ) E } Expr* parse_expr17(Lexer& lex, CodeBlob& code, bool nv) { Expr* res = parse_expr20(lex, code, nv); while (lex.tp() == _Lshift || lex.tp() == _Rshift || lex.tp() == _RshiftC || lex.tp() == _RshiftR) { res->chk_rvalue(lex.cur()); int t = lex.tp(); sym_idx_t name = symbols.lookup_add(std::string{"_"} + lex.cur().str + "_"); check_global_func(lex.cur(), name); SrcLocation loc{lex.cur().loc}; lex.next(); auto x = parse_expr20(lex, code, false); x->chk_rvalue(lex.cur()); res = new Expr{Expr::_Apply, name, {res, x}}; res->here = loc; res->set_val(t); res->flags = Expr::_IsRvalue; res->deduce_type(lex.cur()); } return res; } // parse E [ (== | < | > | <= | >= | != | <=> ) E ] Expr* parse_expr15(Lexer& lex, CodeBlob& code, bool nv) { Expr* res = parse_expr17(lex, code, nv); if (lex.tp() == _Eq || lex.tp() == '<' || lex.tp() == '>' || lex.tp() == _Leq || lex.tp() == _Geq || lex.tp() == _Neq || lex.tp() == _Spaceship) { res->chk_rvalue(lex.cur()); int t = lex.tp(); sym_idx_t name = symbols.lookup_add(std::string{"_"} + lex.cur().str + "_"); check_global_func(lex.cur(), name); SrcLocation loc{lex.cur().loc}; lex.next(); auto x = parse_expr17(lex, code, false); x->chk_rvalue(lex.cur()); res = new Expr{Expr::_Apply, name, {res, x}}; res->here = loc; res->set_val(t); res->flags = Expr::_IsRvalue; res->deduce_type(lex.cur()); } return res; } // parse E [ ? E : E ] Expr* parse_expr13(Lexer& lex, CodeBlob& code, bool nv) { Expr* res = parse_expr15(lex, code, nv); if (lex.tp() == '?') { res->chk_rvalue(lex.cur()); SrcLocation loc{lex.cur().loc}; lex.next(); auto x = parse_expr(lex, code, false); x->chk_rvalue(lex.cur()); lex.expect(':'); auto y = parse_expr13(lex, code, false); y->chk_rvalue(lex.cur()); res = new Expr{Expr::_CondExpr, {res, x, y}}; res->here = loc; res->flags = Expr::_IsRvalue; res->deduce_type(lex.cur()); } return res; } // parse LE1 (= | += | -= | ... ) E2 Expr* parse_expr10(Lexer& lex, CodeBlob& code, bool nv) { auto x = parse_expr13(lex, code, nv); int t = lex.tp(); if (t == _PlusLet || t == _MinusLet || t == _TimesLet || t == _DivLet || t == _DivRLet || t == _DivCLet || t == _ModLet || t == _LshiftLet || t == _RshiftLet || t == _RshiftCLet || t == _RshiftRLet) { x->chk_lvalue(lex.cur()); x->chk_rvalue(lex.cur()); sym_idx_t name = symbols.lookup_add(std::string{"^_"} + lex.cur().str + "_"); check_global_func(lex.cur(), name); SrcLocation loc{lex.cur().loc}; lex.next(); auto y = parse_expr10(lex, code, false); y->chk_rvalue(lex.cur()); Expr* z = new Expr{Expr::_Apply, name, {x, y}}; z->here = loc; z->set_val(t); z->flags = Expr::_IsRvalue; z->deduce_type(lex.cur()); Expr* res = new Expr{Expr::_Letop, {x->copy(), z}}; res->here = loc; res->flags = (x->flags & ~Expr::_IsType) | Expr::_IsRvalue; res->set_val(t); res->deduce_type(lex.cur()); return res; } else if (t == '=') { x->chk_lvalue(lex.cur()); SrcLocation loc{lex.cur().loc}; lex.next(); auto y = parse_expr10(lex, code, false); y->chk_rvalue(lex.cur()); x->predefine_vars(); x->define_new_vars(code); Expr* res = new Expr{Expr::_Letop, {x, y}}; res->here = loc; res->flags = (x->flags & ~Expr::_IsType) | Expr::_IsRvalue; res->set_val(t); res->deduce_type(lex.cur()); return res; } else { return x; } } Expr* parse_expr(Lexer& lex, CodeBlob& code, bool nv) { return parse_expr10(lex, code, nv); } namespace blk_fl { enum { end = 1, ret = 2, empty = 4 }; typedef int val; constexpr val init = end | empty; void combine(val& x, const val y) { x |= y & ret; x &= y | ~(end | empty); } void combine_parallel(val& x, const val y) { x &= y | ~(ret | empty); x |= y & end; } } // namespace blk_fl blk_fl::val parse_return_stmt(Lexer& lex, CodeBlob& code) { auto expr = parse_expr(lex, code); expr->chk_rvalue(lex.cur()); try { // std::cerr << "in return: "; unify(expr->e_type, code.ret_type); } catch (UnifyError& ue) { std::ostringstream os; os << "previous function return type " << code.ret_type << " cannot be unified with return statement expression type " << expr->e_type << ": " << ue; lex.cur().error(os.str()); } std::vector tmp_vars = expr->pre_compile(code); code.emplace_back(lex.cur().loc, Op::_Return, std::move(tmp_vars)); lex.expect(';'); return blk_fl::ret; } blk_fl::val parse_implicit_ret_stmt(Lexer& lex, CodeBlob& code) { auto ret_type = TypeExpr::new_unit(); try { // std::cerr << "in implicit return: "; unify(ret_type, code.ret_type); } catch (UnifyError& ue) { std::ostringstream os; os << "previous function return type " << code.ret_type << " cannot be unified with implicit end-of-block return type " << ret_type << ": " << ue; lex.cur().error(os.str()); } code.emplace_back(lex.cur().loc, Op::_Return); return blk_fl::ret; } blk_fl::val parse_stmt(Lexer& lex, CodeBlob& code); blk_fl::val parse_block_stmt(Lexer& lex, CodeBlob& code, bool no_new_scope = false) { lex.expect('{'); if (!no_new_scope) { sym::open_scope(lex); } blk_fl::val res = blk_fl::init; bool warned = false; while (lex.tp() != '}') { if (!(res & blk_fl::end) && !warned) { lex.cur().loc.show_warning("unreachable code"); warned = true; } blk_fl::combine(res, parse_stmt(lex, code)); } if (!no_new_scope) { sym::close_scope(lex); } lex.expect('}'); return res; } blk_fl::val parse_repeat_stmt(Lexer& lex, CodeBlob& code) { SrcLocation loc{lex.cur().loc}; lex.expect(_Repeat); auto expr = parse_expr(lex, code); expr->chk_rvalue(lex.cur()); auto cnt_type = TypeExpr::new_atomic(_Int); try { unify(expr->e_type, cnt_type); } catch (UnifyError& ue) { std::ostringstream os; os << "repeat count value of type " << expr->e_type << " is not an integer: " << ue; lex.cur().error(os.str()); } std::vector tmp_vars = expr->pre_compile(code); if (tmp_vars.size() != 1) { lex.cur().error("repeat count value is not a singleton"); } Op& repeat_op = code.emplace_back(loc, Op::_Repeat, tmp_vars); code.push_set_cur(repeat_op.block0); blk_fl::val res = parse_block_stmt(lex, code); code.close_pop_cur(lex.cur().loc); return res | blk_fl::end; } blk_fl::val parse_while_stmt(Lexer& lex, CodeBlob& code) { SrcLocation loc{lex.cur().loc}; lex.expect(_While); auto expr = parse_expr(lex, code); expr->chk_rvalue(lex.cur()); auto cnt_type = TypeExpr::new_atomic(_Int); try { unify(expr->e_type, cnt_type); } catch (UnifyError& ue) { std::ostringstream os; os << "while condition value of type " << expr->e_type << " is not an integer: " << ue; lex.cur().error(os.str()); } Op& while_op = code.emplace_back(loc, Op::_While); code.push_set_cur(while_op.block0); while_op.left = expr->pre_compile(code); code.close_pop_cur(lex.cur().loc); if (while_op.left.size() != 1) { lex.cur().error("while condition value is not a singleton"); } code.push_set_cur(while_op.block1); blk_fl::val res1 = parse_block_stmt(lex, code); code.close_pop_cur(lex.cur().loc); return res1 | blk_fl::end; } blk_fl::val parse_do_stmt(Lexer& lex, CodeBlob& code) { Op& while_op = code.emplace_back(lex.cur().loc, Op::_Until); lex.expect(_Do); code.push_set_cur(while_op.block0); sym::open_scope(lex); blk_fl::val res = parse_block_stmt(lex, code, true); lex.expect(_Until); auto expr = parse_expr(lex, code); expr->chk_rvalue(lex.cur()); sym::close_scope(lex); auto cnt_type = TypeExpr::new_atomic(_Int); try { unify(expr->e_type, cnt_type); } catch (UnifyError& ue) { std::ostringstream os; os << "`until` condition value of type " << expr->e_type << " is not an integer: " << ue; lex.cur().error(os.str()); } while_op.left = expr->pre_compile(code); code.close_pop_cur(lex.cur().loc); if (while_op.left.size() != 1) { lex.cur().error("`until` condition value is not a singleton"); } return res & ~blk_fl::empty; } blk_fl::val parse_if_stmt(Lexer& lex, CodeBlob& code, int first_lex = _If) { SrcLocation loc{lex.cur().loc}; lex.expect(first_lex); auto expr = parse_expr(lex, code); expr->chk_rvalue(lex.cur()); auto flag_type = TypeExpr::new_atomic(_Int); try { unify(expr->e_type, flag_type); } catch (UnifyError& ue) { std::ostringstream os; os << "`if` condition value of type " << expr->e_type << " is not an integer: " << ue; lex.cur().error(os.str()); } std::vector tmp_vars = expr->pre_compile(code); if (tmp_vars.size() != 1) { lex.cur().error("condition value is not a singleton"); } Op& if_op = code.emplace_back(loc, Op::_If, tmp_vars); code.push_set_cur(if_op.block0); blk_fl::val res1 = parse_block_stmt(lex, code); blk_fl::val res2 = blk_fl::init; code.close_pop_cur(lex.cur().loc); if (lex.tp() == _Else) { lex.expect(_Else); code.push_set_cur(if_op.block1); res2 = parse_block_stmt(lex, code); code.close_pop_cur(lex.cur().loc); } else if (lex.tp() == _Elseif || lex.tp() == _Elseifnot) { code.push_set_cur(if_op.block1); res2 = parse_if_stmt(lex, code, lex.tp()); code.close_pop_cur(lex.cur().loc); } else { if_op.block1 = std::make_unique(lex.cur().loc, Op::_Nop); } if (first_lex == _Ifnot || first_lex == _Elseifnot) { std::swap(if_op.block0, if_op.block1); } blk_fl::combine_parallel(res1, res2); return res1; } blk_fl::val parse_stmt(Lexer& lex, CodeBlob& code) { switch (lex.tp()) { case _Return: { lex.next(); return parse_return_stmt(lex, code); } case '{': { return parse_block_stmt(lex, code); } case ';': { lex.next(); return blk_fl::init; } case _Repeat: return parse_repeat_stmt(lex, code); case _If: case _Ifnot: return parse_if_stmt(lex, code, lex.tp()); case _Do: return parse_do_stmt(lex, code); case _While: return parse_while_stmt(lex, code); default: { auto expr = parse_expr(lex, code); expr->chk_rvalue(lex.cur()); expr->pre_compile(code); lex.expect(';'); return blk_fl::end; } } } CodeBlob* parse_func_body(Lexer& lex, FormalArgList arg_list, TypeExpr* ret_type) { lex.expect('{'); CodeBlob* blob = new CodeBlob{ret_type}; blob->import_params(std::move(arg_list)); blk_fl::val res = blk_fl::init; bool warned = false; while (lex.tp() != '}') { if (!(res & blk_fl::end) && !warned) { lex.cur().loc.show_warning("unreachable code"); warned = true; } blk_fl::combine(res, parse_stmt(lex, *blob)); } if (res & blk_fl::end) { parse_implicit_ret_stmt(lex, *blob); } blob->close_blk(lex.cur().loc); lex.expect('}'); return blob; } SymValAsmFunc* parse_asm_func_body(Lexer& lex, TypeExpr* func_type, const FormalArgList& arg_list, TypeExpr* ret_type, bool impure = false) { auto loc = lex.cur().loc; lex.expect(_Asm); int cnt = (int)arg_list.size(); int width = ret_type->get_width(); if (width < 0 || width > 16) { throw src::ParseError{loc, "return type of an assembler built-in function must have a well-defined fixed width"}; } if (arg_list.size() > 16) { throw src::ParseError{loc, "assembler built-in function must have at most 16 arguments"}; } std::vector cum_arg_width; cum_arg_width.push_back(0); int tot_width = 0; for (auto& arg : arg_list) { int arg_width = std::get(arg)->get_width(); if (arg_width < 0 || arg_width > 16) { throw src::ParseError{std::get(arg), "parameters of an assembler built-in function must have a well-defined fixed width"}; } cum_arg_width.push_back(tot_width += arg_width); } std::vector asm_ops; std::vector arg_order, ret_order; if (lex.tp() == '(') { lex.expect('('); if (lex.tp() != _Mapsto) { std::vector visited(cnt, false); for (int i = 0; i < cnt; i++) { if (lex.tp() != _Ident) { lex.expect(_Ident); } auto sym = sym::lookup_symbol(lex.cur().val); int j; for (j = 0; j < cnt; j++) { if (std::get(arg_list[j]) == sym) { break; } } if (j == cnt) { lex.cur().error("formal argument name expected"); } if (visited[j]) { lex.cur().error("formal argument listed twice"); } visited[j] = true; int c1 = cum_arg_width[j], c2 = cum_arg_width[j + 1]; while (c1 < c2) { arg_order.push_back(c1++); } lex.next(); } assert(arg_order.size() == (unsigned)tot_width); } if (lex.tp() == _Mapsto) { lex.expect(_Mapsto); std::vector visited(width, false); for (int i = 0; i < width; i++) { if (lex.tp() != Lexem::Number || lex.cur().str.size() > 3) { lex.expect(Lexem::Number); } int j = atoi(lex.cur().str.c_str()); if (j < 0 || j >= width || visited[j]) { lex.cur().error("expected integer return value index 0 .. width-1"); } visited[j] = true; ret_order.push_back(j); lex.next(); } } lex.expect(')'); } while (lex.tp() == _String) { asm_ops.push_back(AsmOp::Parse(lex.cur().str, cnt, width)); lex.next(); if (asm_ops.back().is_custom()) { cnt = width; } } if (asm_ops.empty()) { throw src::ParseError{lex.cur().loc, "string with assembler instruction expected"}; } lex.expect(';'); auto res = new SymValAsmFunc{func_type, asm_ops, impure}; res->arg_order = std::move(arg_order); res->ret_order = std::move(ret_order); return res; } void parse_func_def(Lexer& lex) { SrcLocation loc{lex.cur().loc}; sym::open_scope(lex); auto ret_type = parse_type(lex); if (lex.tp() != _Ident) { throw src::ParseError{lex.cur().loc, "function name identifier expected"}; } Lexem func_name = lex.cur(); lex.next(); FormalArgList arg_list = parse_formal_args(lex); bool impure = (lex.tp() == _Impure); if (impure) { lex.next(); } td::RefInt256 method_id; std::string method_name; if (lex.tp() == _MethodId) { lex.next(); if (lex.tp() == '(') { lex.expect('('); if (lex.tp() == Lexem::String) { method_name = lex.cur().str; } else if (lex.tp() == Lexem::Number) { method_name = lex.cur().str; method_id = td::string_to_int256(method_name); if (method_id.is_null()) { lex.cur().error_at("invalid integer constant `", "`"); } } else { throw src::ParseError{lex.cur().loc, "integer or string method identifier expected"}; } lex.next(); lex.expect(')'); } else { method_name = func_name.str; } if (method_id.is_null()) { unsigned crc = td::crc16(method_name); method_id = td::make_refint((crc & 0xffff) | 0x10000); } } if (lex.tp() != ';' && lex.tp() != '{' && lex.tp() != _Asm) { lex.expect('{', "function body block expected"); } TypeExpr* func_type = TypeExpr::new_map(extract_total_arg_type(arg_list), ret_type); if (verbosity >= 1) { std::cerr << "function " << func_name.str << " : " << func_type << std::endl; } SymDef* func_sym = sym::define_global_symbol(func_name.val, 0, loc); assert(func_sym); SymValFunc* func_sym_val = dynamic_cast(func_sym->value); if (func_sym->value) { if (func_sym->value->type != SymVal::_Func || !func_sym_val) { lex.cur().error("was not defined as a function before"); } try { unify(func_sym_val->sym_type, func_type); } catch (UnifyError& ue) { std::ostringstream os; os << "previous type of function " << func_name.str << " : " << func_sym_val->sym_type << " cannot be unified with new type " << func_type << ": " << ue; lex.cur().error(os.str()); } } if (lex.tp() == ';') { make_new_glob_func(func_sym, func_type, impure); lex.next(); } else if (lex.tp() == '{') { if (dynamic_cast(func_sym_val)) { lex.cur().error("function `"s + func_name.str + "` has been already defined as an assembler built-in"); } SymValCodeFunc* func_sym_code; if (func_sym_val) { func_sym_code = dynamic_cast(func_sym_val); if (!func_sym_code) { lex.cur().error("function `"s + func_name.str + "` has been already defined in an yet-unknown way"); } } else { func_sym_code = make_new_glob_func(func_sym, func_type, impure); } if (func_sym_code->code) { lex.cur().error("redefinition of function `"s + func_name.str + "`"); } CodeBlob* code = parse_func_body(lex, arg_list, ret_type); code->name = func_name.str; code->loc = loc; // code->print(std::cerr); // !!!DEBUG!!! func_sym_code->code = code; } else { if (func_sym_val) { if (dynamic_cast(func_sym_val)) { lex.cur().error("function `"s + func_name.str + "` was already declared as an ordinary function"); } if (dynamic_cast(func_sym_val)) { lex.cur().error("redefinition of built-in assembler function `"s + func_name.str + "`"); } lex.cur().error("redefinition of previously (somehow) defined function `"s + func_name.str + "`"); } func_sym->value = parse_asm_func_body(lex, func_type, arg_list, ret_type, impure); } if (method_id.not_null()) { auto val = dynamic_cast(func_sym->value); if (!val) { lex.cur().error("cannot set method id for unknown function `"s + func_name.str + "`"); } if (val->method_id.is_null()) { val->method_id = std::move(method_id); } else if (val->method_id != method_id) { lex.cur().error("integer method identifier for `"s + func_name.str + "` changed to a different value"); } } if (verbosity >= 1) { std::cerr << "new type of function " << func_name.str << " : " << func_type << std::endl; } sym::close_scope(lex); } bool parse_source(std::istream* is, const src::FileDescr* fdescr) { src::SourceReader reader{is, fdescr}; Lexer lex{reader, true}; while (lex.tp() != _Eof) { parse_func_def(lex); } return true; } bool parse_source_file(const char* filename) { if (!filename || !*filename) { throw src::Fatal{"source file name is an empty string"}; } src::FileDescr* cur_source = new src::FileDescr{filename}; std::ifstream ifs{filename}; if (ifs.fail()) { throw src::Fatal{std::string{"cannot open source file `"} + filename + "`"}; } return parse_source(&ifs, cur_source); } bool parse_source_stdin() { return parse_source(&std::cin, new src::FileDescr{"stdin", true}); } } // namespace funC