/* This file is part of TON Blockchain Library. TON Blockchain Library is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. TON Blockchain Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with TON Blockchain Library. If not, see . Copyright 2017-2019 Telegram Systems LLP */ #pragma once #include "td/fec/algebra/Octet.h" #include "td/fec/algebra/Simd.h" #include "td/utils/Span.h" #include "td/utils/format.h" namespace td { class MatrixGF256 { public: MatrixGF256(size_t rows, size_t cols) : rows_(rows), cols_(cols) { stride_ = (cols_ + Simd::alignment() - 1) / Simd::alignment() * Simd::alignment(); storage_ = std::make_unique(stride_ * rows + Simd::alignment() - 1); matrix_ = storage_.get(); while (!Simd::is_aligned_pointer(matrix_)) { matrix_++; } CHECK(Simd::is_aligned_pointer(matrix_)); CHECK(Simd::is_aligned_pointer(matrix_ + stride_)); CHECK(static_cast(matrix_ - storage_.get()) < Simd::alignment()); } void set_zero() { std::fill(matrix_, matrix_ + stride_ * rows_, 0); } size_t rows() const { return rows_; } size_t cols() const { return cols_; } MatrixGF256 apply_row_permutation(Span permutation) { MatrixGF256 res(rows_, cols_); for (size_t row = 0; row < rows_; row++) { res.row(row).copy_from(this->row(permutation[row])); } return res; } Octet get(size_t row, size_t col) const { DCHECK(row < rows_ && col < cols_); return Octet(matrix_[row * stride_ + col]); } void set(size_t row, size_t col, Octet o) { DCHECK(row < rows_ && col < cols_); matrix_[row * stride_ + col] = o.value(); } void row_multiply(size_t row, Octet o) { uint8* p = row_ptr(row); Simd::gf256_mul(p, o.value(), stride_); } Slice row(size_t row) const { return Slice(row_ptr(row), cols()); } MutableSlice row(size_t row) { return MutableSlice(row_ptr(row), cols()); } template void set_from(const M& m, size_t row_offset, size_t col_offset) { auto to = block_view(row_offset, col_offset, rows() - row_offset, cols() - col_offset); for (size_t i = 0; i < m.rows(); i++) { to.row(i).copy_from(m.row(i)); } } MatrixGF256 copy() { MatrixGF256 res(rows(), cols()); res.set_from(*this, 0, 0); return res; } void add(const MatrixGF256& m) { CHECK(m.rows() == rows()); CHECK(m.cols() == cols()); for (size_t i = 0; i < m.rows(); i++) { auto* to = row_ptr(i); auto* from = m.row_ptr(i); row_add(to, from); } } // row(a) += row(b) * m void row_add_mul(size_t a, size_t b, Octet m) { row_add_mul(row_ptr(a), row_ptr(b), m); } void row_add_mul(size_t a, Slice b, Octet m) { row_add_mul(row_ptr(a), b.ubegin(), m); } // row(a) += row(b) void row_add(size_t a, size_t b) { row_add(row_ptr(a), row_ptr(b)); } void row_add(size_t a, Slice b) { row_add(row_ptr(a), b.ubegin()); } void row_set(size_t a, Slice b) { row(a).copy_from(b); } class BlockView { public: BlockView(size_t row_offset, size_t col_offset, size_t row_size, size_t col_size, MatrixGF256& m) : row_offset_(row_offset), col_offset_(col_offset), row_size_(row_size), col_size_(col_size), m_(m) { } size_t cols() const { return col_size_; } size_t rows() const { return row_size_; } Slice row(size_t row) const { return m_.row(row_offset_ + row).remove_prefix(col_offset_); } MutableSlice row(size_t row) { return m_.row(row_offset_ + row).remove_prefix(col_offset_); } private: size_t row_offset_; size_t col_offset_; size_t row_size_; size_t col_size_; MatrixGF256& m_; }; BlockView block_view(size_t row_offset, size_t col_offset, size_t row_size, size_t col_size) { return BlockView(row_offset, col_offset, row_size, col_size, *this); } private: uint8* matrix_; size_t rows_; size_t cols_; size_t stride_; std::unique_ptr storage_; uint8* row_ptr(size_t row) { return matrix_ + stride_ * row; } const uint8* row_ptr(size_t row) const { return matrix_ + stride_ * row; } void row_add_mul(uint8* ap, const uint8* bp, Octet m) { uint8 u = m.value(); if (u == 0) { return; } if (u == 1) { return row_add(ap, bp); } Simd::gf256_add_mul(ap, bp, u, stride_); } void row_add(uint8* ap, const uint8* bp) { Simd::gf256_add(ap, bp, stride_); } }; inline StringBuilder& operator<<(StringBuilder& sb, const MatrixGF256& m) { sb << "\n"; for (uint32 i = 0; i < m.rows(); i++) { auto row = m.row(i); for (uint32 j = 0; j < m.cols(); j++) { uint8 x = row[j]; sb << " " << format::hex_digit(x / 16) << format::hex_digit(x % 16); } sb << "\n"; } return sb; } } // namespace td