/*
This file is part of TON Blockchain Library.
TON Blockchain Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
TON Blockchain Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with TON Blockchain Library. If not, see .
Copyright 2017-2019 Telegram Systems LLP
*/
#include "td/utils/Random.h"
#include "td/utils/logging.h"
#include "td/utils/port/thread_local.h"
#if TD_HAVE_OPENSSL
#include
#endif
#include
#include
#include
#include
namespace td {
#if TD_HAVE_OPENSSL
namespace {
std::atomic random_seed_generation{0};
} // namespace
void Random::secure_bytes(MutableSlice dest) {
Random::secure_bytes(dest.ubegin(), dest.size());
}
void Random::secure_bytes(unsigned char *ptr, size_t size) {
constexpr size_t buf_size = 512;
static TD_THREAD_LOCAL unsigned char *buf; // static zero-initialized
static TD_THREAD_LOCAL size_t buf_pos;
static TD_THREAD_LOCAL int64 generation;
if (init_thread_local(buf, buf_size)) {
buf_pos = buf_size;
generation = 0;
}
if (ptr == nullptr) {
td::MutableSlice(buf, buf_size).fill_zero_secure();
buf_pos = buf_size;
return;
}
if (generation != random_seed_generation.load(std::memory_order_relaxed)) {
generation = random_seed_generation.load(std::memory_order_acquire);
buf_pos = buf_size;
}
auto ready = min(size, buf_size - buf_pos);
if (ready != 0) {
std::memcpy(ptr, buf + buf_pos, ready);
buf_pos += ready;
ptr += ready;
size -= ready;
if (size == 0) {
return;
}
}
if (size < buf_size) {
int err = RAND_bytes(buf, static_cast(buf_size));
// TODO: it CAN fail
LOG_IF(FATAL, err != 1);
buf_pos = size;
std::memcpy(ptr, buf, size);
return;
}
CHECK(size <= static_cast(std::numeric_limits::max()));
int err = RAND_bytes(ptr, static_cast(size));
// TODO: it CAN fail
LOG_IF(FATAL, err != 1);
}
int32 Random::secure_int32() {
int32 res = 0;
secure_bytes(reinterpret_cast(&res), sizeof(int32));
return res;
}
int64 Random::secure_int64() {
int64 res = 0;
secure_bytes(reinterpret_cast(&res), sizeof(int64));
return res;
}
uint32 Random::secure_uint32() {
uint32 res = 0;
secure_bytes(reinterpret_cast(&res), sizeof(uint32));
return res;
}
uint64 Random::secure_uint64() {
uint64 res = 0;
secure_bytes(reinterpret_cast(&res), sizeof(uint64));
return res;
}
void Random::add_seed(Slice bytes, double entropy) {
RAND_add(bytes.data(), static_cast(bytes.size()), entropy);
random_seed_generation++;
}
void Random::secure_cleanup() {
Random::secure_bytes(nullptr, 0);
}
#endif
static unsigned int rand_device_helper() {
static TD_THREAD_LOCAL std::random_device *rd;
init_thread_local(rd);
return (*rd)();
}
uint32 Random::fast_uint32() {
static TD_THREAD_LOCAL std::mt19937 *gen;
if (!gen) {
auto &rg = rand_device_helper;
std::seed_seq seq{rg(), rg(), rg(), rg(), rg(), rg(), rg(), rg(), rg(), rg(), rg(), rg()};
init_thread_local(gen, seq);
}
return static_cast((*gen)());
}
uint64 Random::fast_uint64() {
static TD_THREAD_LOCAL std::mt19937_64 *gen;
if (!gen) {
auto &rg = rand_device_helper;
std::seed_seq seq{rg(), rg(), rg(), rg(), rg(), rg(), rg(), rg(), rg(), rg(), rg(), rg()};
init_thread_local(gen, seq);
}
return static_cast((*gen)());
}
int Random::fast(int min, int max) {
if (min == std::numeric_limits::min() && max == std::numeric_limits::max()) {
// to prevent integer overflow and division by zero
min++;
}
DCHECK(min <= max);
return static_cast(min + fast_uint32() % (max - min + 1)); // TODO signed_cast
}
double Random::fast(double min, double max) {
DCHECK(min <= max);
return min +
fast_uint32() * 1.0 /
(static_cast(std::numeric_limits::max()) - std::numeric_limits::min()) *
(max - min);
}
Random::Xorshift128plus::Xorshift128plus(uint64 seed) {
auto next = [&]() {
// splitmix64
seed += static_cast(0x9E3779B97F4A7C15);
uint64 z = seed;
z = (z ^ (z >> 30)) * static_cast(0xBF58476D1CE4E5B9);
z = (z ^ (z >> 27)) * static_cast(0x94D049BB133111EB);
return z ^ (z >> 31);
};
seed_[0] = next();
seed_[1] = next();
}
Random::Xorshift128plus::Xorshift128plus(uint64 seed_a, uint64 seed_b) {
seed_[0] = seed_a;
seed_[1] = seed_b;
}
uint64 Random::Xorshift128plus::operator()() {
uint64 x = seed_[0];
const uint64 y = seed_[1];
seed_[0] = y;
x ^= x << 23;
seed_[1] = x ^ y ^ (x >> 17) ^ (y >> 26);
return seed_[1] + y;
}
int Random::Xorshift128plus::fast(int min, int max) {
return static_cast((*this)() % (max - min + 1) + min);
}
} // namespace td