mirror of
https://github.com/danog/ton.git
synced 2024-11-26 20:14:55 +01:00
256 lines
6.8 KiB
C++
256 lines
6.8 KiB
C++
/*
|
|
This file is part of TON Blockchain Library.
|
|
|
|
TON Blockchain Library is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
TON Blockchain Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Copyright 2017-2019 Telegram Systems LLP
|
|
*/
|
|
#include "ellcurve/TwEdwards.h"
|
|
#include <assert.h>
|
|
#include <cstring>
|
|
|
|
namespace ellcurve {
|
|
using namespace arith;
|
|
|
|
class TwEdwardsCurve;
|
|
|
|
TwEdwardsCurve::TwEdwardsCurve(const Residue& _D, const Residue& _Gy, td::Ref<ResidueRing> _R)
|
|
: ring(_R)
|
|
, D(_D)
|
|
, D2(_D + _D)
|
|
, Gy(_Gy)
|
|
, P_(_R->get_modulus())
|
|
, cofactor_short(0)
|
|
, G(_R)
|
|
, O(_R)
|
|
, table_lines(0)
|
|
, table() {
|
|
init();
|
|
}
|
|
|
|
TwEdwardsCurve::~TwEdwardsCurve() {
|
|
}
|
|
|
|
void TwEdwardsCurve::init() {
|
|
assert(D != ring->zero() && D != ring->convert(-1));
|
|
O.X = O.Z = ring->one();
|
|
G = SegrePoint(*this, Gy, 0);
|
|
assert(!G.XY.is_zero());
|
|
}
|
|
|
|
void TwEdwardsCurve::set_order_cofactor(const Bignum& order, int cof) {
|
|
assert(order > 0);
|
|
assert(cof >= 0);
|
|
assert(cof == 0 || (order % cof) == 0);
|
|
Order = order;
|
|
cofactor = cofactor_short = cof;
|
|
if (cof > 0) {
|
|
L = order / cof;
|
|
assert(is_prime(L));
|
|
assert(!power_gen(1).is_zero());
|
|
assert(power_gen(L).is_zero());
|
|
}
|
|
}
|
|
|
|
TwEdwardsCurve::SegrePoint::SegrePoint(const TwEdwardsCurve& E, const Residue& y, bool x_sign)
|
|
: XY(y), X(E.get_base_ring()), Y(y), Z(E.get_base_ring()->one()) {
|
|
Residue x(y.ring_ref());
|
|
if (E.recover_x(x, y, x_sign)) {
|
|
XY *= x;
|
|
X = x;
|
|
} else {
|
|
XY = Y = Z = E.get_base_ring()->zero();
|
|
}
|
|
}
|
|
|
|
bool TwEdwardsCurve::recover_x(Residue& x, const Residue& y, bool x_sign) const {
|
|
// recovers x from equation -x^2+y^2 = 1+d*x^2*y^2
|
|
Residue z = inverse(ring->one() + D * sqr(y));
|
|
if (z.is_zero()) {
|
|
return false;
|
|
}
|
|
z *= sqr(y) - ring->one();
|
|
Residue t = sqrt(z);
|
|
if (sqr(t) == z) {
|
|
x = (t.extract().odd() == x_sign) ? t : -t;
|
|
//std::cout << "x=" << x << ", y=" << y << std::endl;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void TwEdwardsCurve::add_points(SegrePoint& Res, const SegrePoint& P, const SegrePoint& Q) const {
|
|
Residue a((P.X + P.Y) * (Q.X + Q.Y));
|
|
Residue b((P.X - P.Y) * (Q.X - Q.Y));
|
|
Residue c(P.Z * Q.Z * ring->convert(2));
|
|
Residue d(P.XY * Q.XY * D2);
|
|
Residue x_num(a - b); // 2(x1y2+x2y1)
|
|
Residue y_num(a + b); // 2(x1x2+y1y2)
|
|
Residue x_den(c + d); // 2(1+dx1x2y1y2)
|
|
Residue y_den(c - d); // 2(1-dx1x2y1y2)
|
|
Res.X = x_num * y_den; // x = x_num/x_den, y = y_num/y_den
|
|
Res.Y = y_num * x_den;
|
|
Res.XY = x_num * y_num;
|
|
Res.Z = x_den * y_den;
|
|
}
|
|
|
|
TwEdwardsCurve::SegrePoint TwEdwardsCurve::add_points(const SegrePoint& P, const SegrePoint& Q) const {
|
|
SegrePoint Res(ring);
|
|
add_points(Res, P, Q);
|
|
return Res;
|
|
}
|
|
|
|
void TwEdwardsCurve::double_point(SegrePoint& Res, const SegrePoint& P) const {
|
|
add_points(Res, P, P);
|
|
}
|
|
|
|
TwEdwardsCurve::SegrePoint TwEdwardsCurve::double_point(const SegrePoint& P) const {
|
|
SegrePoint Res(ring);
|
|
double_point(Res, P);
|
|
return Res;
|
|
}
|
|
|
|
// computes u([n]P) in form (xy,x,y,1)*Z
|
|
TwEdwardsCurve::SegrePoint TwEdwardsCurve::power_point(const SegrePoint& A, const Bignum& n, bool uniform) const {
|
|
assert(n >= 0);
|
|
if (n == 0) {
|
|
return O;
|
|
}
|
|
|
|
int k = n.num_bits();
|
|
SegrePoint P(A);
|
|
|
|
if (uniform) {
|
|
SegrePoint Q(double_point(A));
|
|
|
|
for (int i = k - 2; i >= 0; --i) {
|
|
if (n[i]) {
|
|
add_points(P, P, Q);
|
|
double_point(Q, Q);
|
|
} else {
|
|
// we do more operations than necessary for uniformicity
|
|
add_points(Q, P, Q);
|
|
double_point(P, P);
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = k - 2; i >= 0; --i) {
|
|
double_point(P, P);
|
|
if (n[i]) {
|
|
add_points(P, P, A); // may optimize further if A.z = 1
|
|
}
|
|
}
|
|
}
|
|
return P;
|
|
}
|
|
|
|
int TwEdwardsCurve::build_table() {
|
|
if (table.size()) {
|
|
return -1;
|
|
}
|
|
table_lines = (P_.num_bits() >> 2) + 2;
|
|
table.reserve(table_lines * 15 + 1);
|
|
table.emplace_back(get_base_point());
|
|
for (int i = 0; i < table_lines; i++) {
|
|
for (int j = 0; j < 15; j++) {
|
|
table.emplace_back(add_points(table[15 * i + j], table[15 * i]));
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int get_nibble(const Bignum& n, int idx) {
|
|
return n[idx * 4 + 3] * 8 + n[idx * 4 + 2] * 4 + n[idx * 4 + 1] * 2 + n[idx * 4];
|
|
}
|
|
|
|
TwEdwardsCurve::SegrePoint TwEdwardsCurve::power_gen(const Bignum& n, bool uniform) const {
|
|
if (uniform || n.num_bits() > table_lines * 4) {
|
|
return power_point(G, n, uniform);
|
|
} else if (n.is_zero()) {
|
|
return O;
|
|
} else {
|
|
int k = (n.num_bits() + 3) >> 2;
|
|
assert(k > 0 && k <= table_lines);
|
|
int x = get_nibble(n, k - 1);
|
|
assert(x > 0 && x < 16);
|
|
SegrePoint P(table[15 * (k - 1) + x - 1]);
|
|
for (int i = k - 2; i >= 0; i--) {
|
|
x = get_nibble(n, i);
|
|
assert(x >= 0 && x < 16);
|
|
if (x > 0) {
|
|
add_points(P, P, table[15 * i + x - 1]);
|
|
}
|
|
}
|
|
return P;
|
|
}
|
|
}
|
|
|
|
bool TwEdwardsCurve::SegrePoint::export_point(unsigned char buffer[32], bool need_x) const {
|
|
if (!is_normalized()) {
|
|
if (Z.is_zero()) {
|
|
std::memset(buffer, 0xff, 32);
|
|
return false;
|
|
}
|
|
Residue f(inverse(Z));
|
|
Bignum y((Y * f).extract());
|
|
assert(!y[255]);
|
|
if (need_x) {
|
|
y[255] = (X * f).extract().odd();
|
|
}
|
|
y.export_lsb(buffer, 32);
|
|
} else {
|
|
Bignum y(Y.extract());
|
|
assert(!y[255]);
|
|
if (need_x) {
|
|
y[255] = X.extract().odd();
|
|
}
|
|
y.export_lsb(buffer, 32);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool TwEdwardsCurve::SegrePoint::export_point_u(unsigned char buffer[32]) const {
|
|
if (Z == Y) {
|
|
std::memset(buffer, 0xff, 32);
|
|
return false;
|
|
}
|
|
Residue f(inverse(Z - Y));
|
|
((Z + Y) * f).extract().export_lsb(buffer, 32);
|
|
assert(!(buffer[31] & 0x80));
|
|
return true;
|
|
}
|
|
|
|
TwEdwardsCurve::SegrePoint TwEdwardsCurve::import_point(const unsigned char point[32], bool& ok) const {
|
|
Bignum y;
|
|
y.import_lsb(point, 32);
|
|
bool x_sign = y[255];
|
|
y[255] = 0;
|
|
Residue yr(y, ring);
|
|
Residue xr(ring);
|
|
ok = recover_x(xr, yr, x_sign);
|
|
return ok ? SegrePoint(xr, yr) : SegrePoint(ring);
|
|
}
|
|
|
|
const TwEdwardsCurve& Ed25519() {
|
|
static const TwEdwardsCurve Ed25519 = [] {
|
|
TwEdwardsCurve res(Fp25519()->frac(-121665, 121666), Fp25519()->frac(4, 5), Fp25519());
|
|
res.set_order_cofactor(hex_string{"80000000000000000000000000000000a6f7cef517bce6b2c09318d2e7ae9f68"}, 8);
|
|
res.build_table();
|
|
return res;
|
|
}();
|
|
return Ed25519;
|
|
}
|
|
} // namespace ellcurve
|