mirror of
https://github.com/danog/ton.git
synced 2024-11-26 20:14:55 +01:00
315 lines
14 KiB
C++
315 lines
14 KiB
C++
/*
|
|
This file is part of TON Blockchain source code.
|
|
|
|
TON Blockchain is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
TON Blockchain is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with TON Blockchain. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
In addition, as a special exception, the copyright holders give permission
|
|
to link the code of portions of this program with the OpenSSL library.
|
|
You must obey the GNU General Public License in all respects for all
|
|
of the code used other than OpenSSL. If you modify file(s) with this
|
|
exception, you may extend this exception to your version of the file(s),
|
|
but you are not obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. If you delete this exception statement
|
|
from all source files in the program, then also delete it here.
|
|
|
|
Copyright 2017-2019 Telegram Systems LLP
|
|
*/
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <string>
|
|
#include <cstring>
|
|
|
|
#include "crypto/ellcurve/Ed25519.h"
|
|
|
|
static void my_assert_impl(bool cond, const char* str, const char* file, int line) {
|
|
if (!cond) {
|
|
std::cerr << "Failed " << str << " in " << file << " at " << line << ".\n";
|
|
}
|
|
}
|
|
#define my_assert(x) my_assert_impl(x, #x, __FILE__, __LINE__)
|
|
|
|
void print_buffer(const unsigned char buffer[32]) {
|
|
for (int i = 0; i < 32; i++) {
|
|
char buff[4];
|
|
sprintf(buff, "%02x", buffer[i]);
|
|
std::cout << buff;
|
|
}
|
|
}
|
|
|
|
std::string buffer_to_hex(const unsigned char* buffer, std::size_t size = 32) {
|
|
const char* hex = "0123456789ABCDEF";
|
|
std::string res(2 * size, '\0');
|
|
for (std::size_t i = 0; i < size; i++) {
|
|
auto c = buffer[i];
|
|
res[2 * i] = hex[c & 15];
|
|
res[2 * i + 1] = hex[c >> 4];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// export of (17/12)G on twisted Edwards curve
|
|
unsigned char test_vector1[32] = {0xfc, 0xb7, 0x42, 0x1e, 0x26, 0xad, 0x1b, 0x17, 0xf6, 0xb1, 0x52,
|
|
0x0c, 0xdb, 0x8a, 0x64, 0x7d, 0x28, 0xa7, 0x56, 0x69, 0xd4, 0xb6,
|
|
0x0c, 0xec, 0x63, 0x72, 0x5e, 0xe6, 0x32, 0x4d, 0xf7, 0xe6};
|
|
|
|
unsigned char rfc7748_output[32] = {
|
|
0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d, 0x7a, 0xad, 0xe4, 0x5c, 0xb4, 0xb8, 0x73, 0xf8,
|
|
0x8b, 0x59, 0x5a, 0x68, 0x79, 0x9f, 0xa1, 0x52, 0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac, 0x79, 0x57,
|
|
};
|
|
|
|
bool test_ed25519_impl(void) {
|
|
std::cout << "************** Testing Curve25519 / Ed25519 operations ************\n";
|
|
auto& E = ellcurve::Curve25519();
|
|
auto& Edw = ellcurve::Ed25519();
|
|
arith::Bignum L = E.get_ell();
|
|
my_assert(arith::is_prime(L));
|
|
my_assert(L == Edw.get_ell());
|
|
arith::ResidueRing Fl(L);
|
|
arith::Bignum s = Fl.frac(17, 12).extract();
|
|
arith::Bignum t = Fl.frac(12, 17).extract();
|
|
std::cout << "l = " << L << std::endl;
|
|
std::cout << "s = 17/12 mod l = " << s << std::endl;
|
|
std::cout << "t = 12/17 mod l = " << t << std::endl;
|
|
auto sG = E.power_gen_xz(s);
|
|
auto u_sG = sG.get_u();
|
|
std::cout << "Curve25519 u(sG) = " << sG.get_u().extract() << std::endl;
|
|
std::cout << "Curve25519 y(sG) = " << sG.get_y().extract() << std::endl;
|
|
auto sG1 = Edw.power_gen(s);
|
|
std::cout << "Ed25519 u(sG) = " << sG1.get_u().extract() << std::endl;
|
|
std::cout << "Ed25519 y(sG) = " << sG1.get_y().extract() << std::endl;
|
|
std::cout << "Ed25519 x(sG) = " << sG1.get_x().extract() << std::endl;
|
|
my_assert(sG1.get_x().extract() != sG1.get_y().extract());
|
|
my_assert(sG.get_u() == sG1.get_u());
|
|
my_assert(sG.get_y() == sG1.get_y());
|
|
|
|
my_assert(
|
|
sG1.get_x().extract() ==
|
|
arith::Bignum(arith::dec_string{"9227429025021714590777223519505276506601225973596506606120015751301699519597"}));
|
|
my_assert(sG1.get_y().extract() ==
|
|
arith::Bignum(
|
|
arith::dec_string{"46572854587220149033453000581008590225032365765275643343836649812808016508924"}));
|
|
|
|
auto sG2 = Edw.power_gen(s, true);
|
|
my_assert(sG1.get_u() == sG2.get_u());
|
|
my_assert(sG1.get_y() == sG2.get_y());
|
|
unsigned char buff[32];
|
|
std::memset(buff, 0, 32);
|
|
my_assert(sG1.export_point(buff));
|
|
std::cout << "sG export = " << buffer_to_hex(buff) << std::endl;
|
|
bool ok;
|
|
auto sG3 = Edw.import_point(buff, ok);
|
|
my_assert(ok);
|
|
my_assert(!std::memcmp(buff, test_vector1, 32));
|
|
my_assert(sG3.get_u() == sG1.get_u());
|
|
my_assert(sG2.get_x() == sG2.get_x());
|
|
my_assert(sG2.get_y() == sG2.get_y());
|
|
|
|
auto stG = E.power_xz(u_sG, t);
|
|
std::cout << "Curve25519 u(stG) = " << stG.get_u().extract() << std::endl;
|
|
my_assert(stG.get_u().extract() == 9);
|
|
auto stG1 = Edw.power_point(sG1, t);
|
|
std::cout << "Ed25519 u(stG) = " << stG1.get_u().extract() << std::endl;
|
|
my_assert(stG1.get_u().extract() == 9);
|
|
stG1.normalize();
|
|
my_assert(stG1.XY == Edw.get_base_point().XY);
|
|
my_assert(stG1.X == Edw.get_base_point().X);
|
|
my_assert(stG1.Y == Edw.get_base_point().Y);
|
|
my_assert(stG1.Z == Edw.get_base_point().Z);
|
|
auto stG2 = Edw.power_point(sG2, t, true);
|
|
my_assert(stG2.get_u().extract() == 9);
|
|
stG2.normalize();
|
|
my_assert(stG2.XY == stG1.XY && stG2.X == stG1.X && stG2.Y == stG1.Y);
|
|
auto stG3 = Edw.power_point(sG3, t).normalize();
|
|
auto stG4 = Edw.power_point(sG3, t, true).normalize();
|
|
my_assert(stG3.XY == stG1.XY && stG3.X == stG1.X && stG3.Y == stG1.Y);
|
|
my_assert(stG4.XY == stG1.XY && stG4.X == stG1.X && stG4.Y == stG1.Y);
|
|
|
|
// RFC7748 test vector
|
|
auto u =
|
|
arith::Bignum(arith::dec_string{"8883857351183929894090759386610649319417338800022198945255395922347792736741"});
|
|
//u[255] = 0;
|
|
auto n =
|
|
arith::Bignum(arith::dec_string{"35156891815674817266734212754503633747128614016119564763269015315466259359304"});
|
|
//n[255] = 0; n[254] = 1;
|
|
//n[0] = n[1] = n[2] = 0;
|
|
auto umodp = arith::Residue(u, E.get_base_ring());
|
|
auto nP = E.power_xz(umodp, n);
|
|
std::cout << "u(P) = " << u.to_hex() << std::endl;
|
|
std::cout << "n = " << n.to_hex() << std::endl;
|
|
std::cout << "u(nP) = " << nP.get_u().extract().to_hex() << std::endl;
|
|
unsigned char buffer[32];
|
|
std::memset(buffer, 0, 32);
|
|
nP.export_point_u(buffer);
|
|
std::cout << "u(nP) export = " << buffer_to_hex(buffer) << std::endl;
|
|
my_assert(!std::memcmp(buffer, rfc7748_output, 32));
|
|
|
|
std::cout << "********* ok\n\n";
|
|
return true;
|
|
}
|
|
|
|
unsigned char fixed_privkey[32] = "abacabadabacabaeabacabadabacaba";
|
|
unsigned char fixed_pubkey[32] = {0x6f, 0x9e, 0x5b, 0xde, 0xce, 0x87, 0x21, 0xeb, 0x57, 0x37, 0xfb,
|
|
0xb5, 0x92, 0x28, 0xba, 0x07, 0xf7, 0x88, 0x0f, 0x73, 0xce, 0x5b,
|
|
0xfa, 0xa1, 0xb7, 0x15, 0x73, 0x03, 0xd4, 0x20, 0x1e, 0x74};
|
|
|
|
unsigned char rfc8032_secret_key1[32] = {0x9d, 0x61, 0xb1, 0x9d, 0xef, 0xfd, 0x5a, 0x60, 0xba, 0x84, 0x4a,
|
|
0xf4, 0x92, 0xec, 0x2c, 0xc4, 0x44, 0x49, 0xc5, 0x69, 0x7b, 0x32,
|
|
0x69, 0x19, 0x70, 0x3b, 0xac, 0x03, 0x1c, 0xae, 0x7f, 0x60};
|
|
|
|
unsigned char rfc8032_public_key1[32] = {0xd7, 0x5a, 0x98, 0x01, 0x82, 0xb1, 0x0a, 0xb7, 0xd5, 0x4b, 0xfe,
|
|
0xd3, 0xc9, 0x64, 0x07, 0x3a, 0x0e, 0xe1, 0x72, 0xf3, 0xda, 0xa6,
|
|
0x23, 0x25, 0xaf, 0x02, 0x1a, 0x68, 0xf7, 0x07, 0x51, 0x1a};
|
|
|
|
unsigned char rfc8032_signature1[64] = {
|
|
0xe5, 0x56, 0x43, 0x00, 0xc3, 0x60, 0xac, 0x72, 0x90, 0x86, 0xe2, 0xcc, 0x80, 0x6e, 0x82, 0x8a,
|
|
0x84, 0x87, 0x7f, 0x1e, 0xb8, 0xe5, 0xd9, 0x74, 0xd8, 0x73, 0xe0, 0x65, 0x22, 0x49, 0x01, 0x55,
|
|
0x5f, 0xb8, 0x82, 0x15, 0x90, 0xa3, 0x3b, 0xac, 0xc6, 0x1e, 0x39, 0x70, 0x1c, 0xf9, 0xb4, 0x6b,
|
|
0xd2, 0x5b, 0xf5, 0xf0, 0x59, 0x5b, 0xbe, 0x24, 0x65, 0x51, 0x41, 0x43, 0x8e, 0x7a, 0x10, 0x0b,
|
|
};
|
|
|
|
unsigned char rfc8032_secret_key2[32] = {
|
|
0xc5, 0xaa, 0x8d, 0xf4, 0x3f, 0x9f, 0x83, 0x7b, 0xed, 0xb7, 0x44, 0x2f, 0x31, 0xdc, 0xb7, 0xb1,
|
|
0x66, 0xd3, 0x85, 0x35, 0x07, 0x6f, 0x09, 0x4b, 0x85, 0xce, 0x3a, 0x2e, 0x0b, 0x44, 0x58, 0xf7,
|
|
};
|
|
|
|
unsigned char rfc8032_public_key2[32] = {
|
|
0xfc, 0x51, 0xcd, 0x8e, 0x62, 0x18, 0xa1, 0xa3, 0x8d, 0xa4, 0x7e, 0xd0, 0x02, 0x30, 0xf0, 0x58,
|
|
0x08, 0x16, 0xed, 0x13, 0xba, 0x33, 0x03, 0xac, 0x5d, 0xeb, 0x91, 0x15, 0x48, 0x90, 0x80, 0x25,
|
|
};
|
|
|
|
unsigned char rfc8032_message2[2] = {0xaf, 0x82};
|
|
|
|
unsigned char rfc8032_signature2[64] = {
|
|
0x62, 0x91, 0xd6, 0x57, 0xde, 0xec, 0x24, 0x02, 0x48, 0x27, 0xe6, 0x9c, 0x3a, 0xbe, 0x01, 0xa3,
|
|
0x0c, 0xe5, 0x48, 0xa2, 0x84, 0x74, 0x3a, 0x44, 0x5e, 0x36, 0x80, 0xd7, 0xdb, 0x5a, 0xc3, 0xac,
|
|
0x18, 0xff, 0x9b, 0x53, 0x8d, 0x16, 0xf2, 0x90, 0xae, 0x67, 0xf7, 0x60, 0x98, 0x4d, 0xc6, 0x59,
|
|
0x4a, 0x7c, 0x15, 0xe9, 0x71, 0x6e, 0xd2, 0x8d, 0xc0, 0x27, 0xbe, 0xce, 0xea, 0x1e, 0xc4, 0x0a,
|
|
};
|
|
|
|
bool test_ed25519_crypto() {
|
|
std::cout << "************** Testing Curve25519 / Ed25519 cryptographic primitives ************\n";
|
|
crypto::Ed25519::PrivateKey PK1, PK2, PK3, PK4, PK5;
|
|
PK1.random_private_key();
|
|
PK2.import_private_key(fixed_privkey);
|
|
unsigned char priv2_export[32];
|
|
bool ok = PK1.export_private_key(priv2_export);
|
|
std::cout << "PK1 = " << ok << " " << buffer_to_hex(priv2_export) << std::endl;
|
|
my_assert(ok);
|
|
ok = PK2.export_private_key(priv2_export);
|
|
std::cout << "PK2 = " << ok << " " << buffer_to_hex(priv2_export) << std::endl;
|
|
my_assert(ok);
|
|
PK3.import_private_key(priv2_export);
|
|
std::cout << "PK3 = " << PK3.ok() << std::endl;
|
|
my_assert(PK3.ok());
|
|
|
|
unsigned char pub_export[32];
|
|
ok = PK1.export_public_key(pub_export);
|
|
std::cout << "PubK1 = " << ok << " " << buffer_to_hex(pub_export) << std::endl;
|
|
my_assert(ok);
|
|
crypto::Ed25519::PublicKey PubK1(pub_export);
|
|
ok = PK2.export_public_key(pub_export);
|
|
std::cout << "PubK2 = " << ok << " " << buffer_to_hex(pub_export) << std::endl;
|
|
my_assert(ok);
|
|
my_assert(!std::memcmp(pub_export, fixed_pubkey, 32));
|
|
crypto::Ed25519::PublicKey PubK2(pub_export);
|
|
ok = PK3.export_public_key(pub_export);
|
|
std::cout << "PubK3 = " << ok << " " << buffer_to_hex(pub_export) << std::endl;
|
|
my_assert(ok);
|
|
my_assert(!std::memcmp(pub_export, fixed_pubkey, 32));
|
|
crypto::Ed25519::PublicKey PubK3(pub_export);
|
|
ok = PubK1.export_public_key(pub_export);
|
|
std::cout << "PubK1 = " << ok << " " << buffer_to_hex(pub_export) << std::endl;
|
|
my_assert(ok);
|
|
|
|
unsigned char secret22[32];
|
|
ok = PK2.compute_shared_secret(secret22, PubK3);
|
|
std::cout << "secret(PK2,PubK2)=" << ok << " " << buffer_to_hex(secret22) << std::endl;
|
|
my_assert(ok);
|
|
|
|
unsigned char secret12[32], secret21[32];
|
|
ok = PK1.compute_shared_secret(secret12, PubK3);
|
|
std::cout << "secret(PK1,PubK2)=" << ok << " " << buffer_to_hex(secret12) << std::endl;
|
|
my_assert(ok);
|
|
ok = PK2.compute_shared_secret(secret21, PubK1);
|
|
std::cout << "secret(PK2,PubK1)=" << ok << " " << buffer_to_hex(secret21) << std::endl;
|
|
my_assert(ok);
|
|
my_assert(!std::memcmp(secret12, secret21, 32));
|
|
|
|
// for (int i = 0; i < 1000; i++) {
|
|
// ok = PK1.compute_shared_secret(secret12, PubK3);
|
|
// my_assert(ok);
|
|
// ok = PK2.compute_shared_secret(secret21, PubK1);
|
|
// my_assert(ok);
|
|
// }
|
|
|
|
unsigned char signature[64];
|
|
ok = PK1.sign_message(signature, (const unsigned char*)"abc", 3);
|
|
std::cout << "PK1.signature=" << ok << " " << buffer_to_hex(signature, 64) << std::endl;
|
|
my_assert(ok);
|
|
|
|
// signature[63] ^= 1;
|
|
ok = PubK1.check_message_signature(signature, (const unsigned char*)"abc", 3);
|
|
std::cout << "PubK1.check_signature=" << ok << std::endl;
|
|
my_assert(ok);
|
|
|
|
PK4.import_private_key(rfc8032_secret_key1);
|
|
PK4.export_public_key(pub_export);
|
|
std::cout << "PK4.private_key = " << buffer_to_hex(rfc8032_secret_key1) << std::endl;
|
|
std::cout << "PK4.public_key = " << buffer_to_hex(pub_export) << std::endl;
|
|
my_assert(!std::memcmp(pub_export, rfc8032_public_key1, 32));
|
|
ok = PK4.sign_message(signature, (const unsigned char*)"", 0);
|
|
std::cout << "PK4.signature('') = " << buffer_to_hex(signature, 64) << std::endl;
|
|
my_assert(ok);
|
|
my_assert(!std::memcmp(signature, rfc8032_signature1, 32));
|
|
|
|
PK5.import_private_key(rfc8032_secret_key2);
|
|
PK5.export_public_key(pub_export);
|
|
std::cout << "PK5.private_key = " << buffer_to_hex(rfc8032_secret_key2) << std::endl;
|
|
std::cout << "PK5.public_key = " << buffer_to_hex(pub_export) << std::endl;
|
|
my_assert(!std::memcmp(pub_export, rfc8032_public_key2, 32));
|
|
ok = PK5.sign_message(signature, rfc8032_message2, 2);
|
|
std::cout << "PK5.signature('') = " << buffer_to_hex(signature, 64) << std::endl;
|
|
my_assert(ok);
|
|
my_assert(!std::memcmp(signature, rfc8032_signature2, 32));
|
|
crypto::Ed25519::PublicKey PubK5(pub_export);
|
|
|
|
// for (int i = 0; i < 10000; i++) {
|
|
// ok = PK5.sign_message (signature, rfc8032_message2, 2);
|
|
// my_assert (ok);
|
|
// }
|
|
// for (int i = 0; i < 10000; i++) {
|
|
// ok = PubK5.check_message_signature (signature, rfc8032_message2, 2);
|
|
// my_assert (ok);
|
|
// }
|
|
|
|
unsigned char temp_pubkey[32];
|
|
crypto::Ed25519::TempKeyGenerator TKG; // use one generator a lot of times
|
|
|
|
TKG.create_temp_shared_secret(temp_pubkey, secret12, PubK1, (const unsigned char*)"abc", 3);
|
|
std::cout << "secret12=" << buffer_to_hex(secret12) << "; temp_pubkey=" << buffer_to_hex(temp_pubkey) << std::endl;
|
|
|
|
PK1.compute_temp_shared_secret(secret21, temp_pubkey);
|
|
std::cout << "secret21=" << buffer_to_hex(secret21) << std::endl;
|
|
my_assert(!std::memcmp(secret12, secret21, 32));
|
|
|
|
std::cout << "********* ok\n\n";
|
|
return true;
|
|
}
|
|
|
|
int main(void) {
|
|
test_ed25519_impl();
|
|
test_ed25519_crypto();
|
|
return 0;
|
|
}
|