mirror of
https://github.com/danog/ton.git
synced 2024-12-03 09:58:01 +01:00
13140ddf29
1. Updated block header, proofs now contain more data Notice, that old proofs may become invalid in the future 2. Fixed message routing 3. Fixed block creator id in block header 4. Support for full proofs in tonlib 5. Support for partial state download 6. Some other bugfixes
262 lines
6.9 KiB
C++
262 lines
6.9 KiB
C++
/*
|
|
This file is part of TON Blockchain Library.
|
|
|
|
TON Blockchain Library is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
TON Blockchain Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Copyright 2017-2019 Telegram Systems LLP
|
|
*/
|
|
#include "bigexp.h"
|
|
#include "td/utils/bits.h"
|
|
#include "td/utils/as.h"
|
|
#include "td/utils/misc.h"
|
|
|
|
namespace td {
|
|
|
|
bool NegExpBinTable::init() {
|
|
init_one();
|
|
int k;
|
|
for (k = minpw2; k <= 0; k++) {
|
|
exp_pw2_table.emplace_back(series_exp(-k));
|
|
exp_pw2_ref_table.emplace_back(true, exp_pw2_table.back());
|
|
}
|
|
for (; k < maxpw2; k++) {
|
|
td::BigIntG<257 * 2> tmp{0};
|
|
auto& x = exp_pw2_table.back();
|
|
tmp.add_mul(x, x).rshift(precision, 0).normalize();
|
|
exp_pw2_table.emplace_back(tmp);
|
|
exp_pw2_ref_table.emplace_back(true, exp_pw2_table.back());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool NegExpBinTable::adjust_precision(int new_precision, int rmode) {
|
|
if (new_precision <= 0 || new_precision > precision) {
|
|
return false;
|
|
}
|
|
if (new_precision == precision) {
|
|
return true;
|
|
}
|
|
int s = precision - new_precision;
|
|
for (auto& x : exp_pw2_table) {
|
|
x.rshift(s, rmode).normalize();
|
|
}
|
|
for (auto& x : exp_pw2_ref_table) {
|
|
x.write().rshift(s, rmode).normalize();
|
|
}
|
|
precision = new_precision;
|
|
return init_one();
|
|
}
|
|
|
|
bool NegExpBinTable::init_one() {
|
|
One.set_pow2(precision);
|
|
return true;
|
|
}
|
|
|
|
bool NegExpBinTable::nexpf(td::BigInt256& res, long long x, int k) const { // res := 2^precision * exp(-x * 2^k)
|
|
if (!x) {
|
|
res.set_pow2(precision);
|
|
return true;
|
|
}
|
|
if (x < 0) {
|
|
return false;
|
|
}
|
|
int s = td::count_trailing_zeroes64(x);
|
|
x >>= s;
|
|
k -= s;
|
|
if (k + minpw2 > 0) {
|
|
return false;
|
|
}
|
|
int t = 63 - td::count_leading_zeroes64(x);
|
|
if (t - k >= maxpw2) {
|
|
return false;
|
|
}
|
|
res.set_pow2(precision);
|
|
while (true) {
|
|
td::BigIntG<257 * 2> tmp{0};
|
|
tmp.add_mul(res, exp_pw2_table.at(t - k - minpw2)).rshift(precision, 0).normalize();
|
|
res = tmp;
|
|
x -= (1LL << t);
|
|
if (!x) {
|
|
return true;
|
|
}
|
|
t = 63 - td::count_leading_zeroes64(x);
|
|
}
|
|
}
|
|
|
|
td::RefInt256 NegExpBinTable::nexpf(long long x, int k) const {
|
|
td::RefInt256 res{true};
|
|
if (nexpf(res.unique_write(), x, k)) {
|
|
return res;
|
|
} else {
|
|
return {};
|
|
}
|
|
}
|
|
|
|
td::BigInt256 NegExpBinTable::series_exp(int k) const { // returns 2^precision * exp(-2^(-k)), k >= 0
|
|
td::BigIntG<257 * 2> s{0}, q;
|
|
const int prec = 52 * 6;
|
|
q.set_pow2(prec);
|
|
int i = 0;
|
|
do {
|
|
s += q;
|
|
--i;
|
|
q.rshift(k).add_tiny(i / 2).divmod_short(i);
|
|
q.normalize();
|
|
} while (q.sgn());
|
|
s.rshift(prec - precision).normalize();
|
|
return s;
|
|
}
|
|
|
|
NegExpInt64Table::NegExpInt64Table() {
|
|
NegExpBinTable t{252, 8, -32};
|
|
CHECK(t.is_valid());
|
|
table0[0] = 0;
|
|
table0_shift[0] = 0;
|
|
for (int i = 1; i <= max_exp; i++) {
|
|
SuperFloat v(*t.nexpf(i, 0)); // compute exp(-i)
|
|
CHECK(!v.is_nan());
|
|
if (v.is_zero()) {
|
|
table0[i] = 0;
|
|
table0_shift[i] = 0;
|
|
} else {
|
|
CHECK(v.normalize());
|
|
int k = v.s + 64 - 252;
|
|
CHECK(k <= -64);
|
|
if (k > -128) {
|
|
table0[i] = v.top();
|
|
table0_shift[i] = td::narrow_cast<unsigned char>(-k - 1);
|
|
} else {
|
|
table0[i] = 0;
|
|
table0_shift[i] = 0;
|
|
}
|
|
}
|
|
// std::cerr << "table0[" << i << "] = exp(-" << i << ") : " << table0[i] << " / 2^" << table0_shift[i] + 1 << std::endl;
|
|
}
|
|
td::BigInt256 One;
|
|
One.set_pow2(252);
|
|
for (int i = 0; i < 256; i++) {
|
|
td::BigInt256 x;
|
|
CHECK(t.nexpf(x, i, 8));
|
|
(x.negate() += One).rshift(252 - 64, 0).normalize();
|
|
table1[i] = SuperFloat::as_uint64(x);
|
|
// std::cerr << "table1[" << i << "] = 1 - exp(-" << i << "/256) : " << table1[i] << " / 2^64" << std::endl;
|
|
}
|
|
for (int i = 0; i < 256; i++) {
|
|
td::BigInt256 x;
|
|
CHECK(t.nexpf(x, i, 16));
|
|
(x.negate() += One).rshift(252 - 64 - 8, 0).normalize();
|
|
table2[i] = SuperFloat::as_uint64(x);
|
|
// std::cerr << "table2[" << i << "] = 1 - exp(-" << i << "/2^16) : " << table2[i] << " / 2^72" << std::endl;
|
|
}
|
|
}
|
|
|
|
td::uint64 NegExpInt64Table::umulnexps32(td::uint64 x, unsigned k, bool trunc) const { // compute x * exp(-k / 2^16)
|
|
if (!k || !x) {
|
|
return x;
|
|
}
|
|
unsigned k0 = (k >> 16);
|
|
if (k0 > max_exp) {
|
|
return 0;
|
|
}
|
|
unsigned s = td::count_leading_zeroes_non_zero64(x);
|
|
x <<= s;
|
|
unsigned k1 = (k >> 8) & 0xff;
|
|
unsigned k2 = k & 0xff;
|
|
if (k2) {
|
|
x -= ((td::uint128::from_unsigned(x).mult(table2[k2]).rounded_hi() + 0x80) >> 8);
|
|
}
|
|
if (k1) {
|
|
x -= td::uint128::from_unsigned(x).mult(table1[k1]).rounded_hi();
|
|
}
|
|
if (k0) {
|
|
if (trunc) {
|
|
return td::uint128::from_unsigned(x).mult(table0[k0]).shr(table0_shift[k0] + s + 1).lo();
|
|
} else {
|
|
return (td::uint128::from_unsigned(x).mult(table0[k0]).shr(table0_shift[k0] + s).lo() + 1) >> 1;
|
|
}
|
|
}
|
|
if (!s) {
|
|
return x;
|
|
} else if (trunc) {
|
|
return x >> s;
|
|
} else {
|
|
return ((x >> (s - 1)) + 1) >> 1;
|
|
}
|
|
}
|
|
|
|
td::int64 NegExpInt64Table::mulnexps32(td::int64 x, unsigned k, bool trunc) const {
|
|
return x >= 0 ? umulnexps32(x, k, trunc) : -umulnexps32(-x, k, trunc);
|
|
}
|
|
|
|
const NegExpInt64Table& NegExpInt64Table::table() {
|
|
static NegExpInt64Table tab;
|
|
return tab;
|
|
}
|
|
|
|
td::uint64 umulnexps32(td::uint64 x, unsigned k, bool trunc) { // compute x * exp(-k / 2^16)
|
|
return NegExpInt64Table::table().umulnexps32(x, k, trunc);
|
|
}
|
|
|
|
td::int64 mulnexps32(td::int64 x, unsigned k, bool trunc) {
|
|
return NegExpInt64Table::table().mulnexps32(x, k, trunc);
|
|
}
|
|
|
|
td::uint128 SuperFloat::as_uint128(const td::BigInt256& x) {
|
|
td::uint64 t[2];
|
|
if (!x.export_bytes_lsb((unsigned char*)(void*)t, sizeof(t), false)) {
|
|
return {std::numeric_limits<uint64>::max(), 0};
|
|
} else {
|
|
return {t[1], t[0]};
|
|
}
|
|
}
|
|
|
|
td::uint64 SuperFloat::as_uint64(const td::BigInt256& x) {
|
|
td::uint64 t;
|
|
if (!x.export_bytes_lsb((unsigned char*)&t, sizeof(t), false)) {
|
|
return std::numeric_limits<uint64>::max();
|
|
} else {
|
|
return t;
|
|
}
|
|
}
|
|
|
|
SuperFloat::SuperFloat(td::BigInt256 x) {
|
|
if (x.unsigned_fits_bits(128)) {
|
|
m = as_uint128(x);
|
|
s = 0;
|
|
} else if (x.sgn() == 1) {
|
|
s = x.bit_size(false) - 128;
|
|
x.rshift(s, 0).normalize();
|
|
m = as_uint128(x);
|
|
} else {
|
|
set_nan();
|
|
}
|
|
}
|
|
|
|
bool SuperFloat::normalize() {
|
|
if (is_nan()) {
|
|
return false;
|
|
}
|
|
if (is_zero()) {
|
|
s = 0;
|
|
return true;
|
|
}
|
|
auto hi = m.hi();
|
|
int t = (hi ? td::count_leading_zeroes_non_zero64(hi) : 64 + td::count_leading_zeroes_non_zero64(m.lo()));
|
|
m.shl(t);
|
|
s -= t;
|
|
return true;
|
|
}
|
|
|
|
} // namespace td
|