mirror of
https://github.com/danog/ton.git
synced 2024-12-02 09:28:02 +01:00
124 lines
3.2 KiB
C++
124 lines
3.2 KiB
C++
/*
|
|
This file is part of TON Blockchain Library.
|
|
|
|
TON Blockchain Library is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
TON Blockchain Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Copyright 2017-2019 Telegram Systems LLP
|
|
*/
|
|
#pragma once
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
#include "openssl/bignum.h"
|
|
#include "openssl/residue.h"
|
|
#include "ellcurve/Fp25519.h"
|
|
|
|
namespace ellcurve {
|
|
using namespace arith;
|
|
|
|
class MontgomeryCurve {
|
|
td::Ref<ResidueRing> ring;
|
|
int A_short; // v^2 = u^2 + Au + 1
|
|
int Gu_short; // u(G)
|
|
int a_short; // (A+2)/4
|
|
Residue A_;
|
|
Residue Gu;
|
|
Bignum P_;
|
|
Bignum L;
|
|
Bignum Order;
|
|
Bignum cofactor;
|
|
int cofactor_short;
|
|
|
|
void init();
|
|
|
|
public:
|
|
MontgomeryCurve(int _A, int _Gu, td::Ref<ResidueRing> _R)
|
|
: ring(_R)
|
|
, A_short(_A)
|
|
, Gu_short(_Gu)
|
|
, a_short((_A + 2) / 4)
|
|
, A_(_A, _R)
|
|
, Gu(_Gu, _R)
|
|
, P_(_R->get_modulus())
|
|
, cofactor_short(0) {
|
|
init();
|
|
}
|
|
|
|
const Residue& get_gen_u() const {
|
|
return Gu;
|
|
}
|
|
const Bignum& get_ell() const {
|
|
return L;
|
|
}
|
|
const Bignum& get_order() const {
|
|
return Order;
|
|
}
|
|
td::Ref<ResidueRing> get_base_ring() const {
|
|
return ring;
|
|
}
|
|
const Bignum& get_p() const {
|
|
return P_;
|
|
}
|
|
|
|
void set_order_cofactor(const Bignum& order, int cof);
|
|
|
|
struct PointXZ {
|
|
Residue X, Z;
|
|
PointXZ(Residue x, Residue z) : X(x), Z(z) {
|
|
x.same_ring(z);
|
|
}
|
|
PointXZ(td::Ref<ResidueRing> r) : X(r->one()), Z(r->zero()) {
|
|
}
|
|
explicit PointXZ(Residue u) : X(u), Z(u.ring_of().one()) {
|
|
}
|
|
explicit PointXZ(Residue y, bool) : X(y.ring_of().one() + y), Z(y.ring_of().one() - y) {
|
|
}
|
|
PointXZ(const PointXZ& P) : X(P.X), Z(P.Z) {
|
|
}
|
|
PointXZ& operator=(const PointXZ& P) {
|
|
X = P.X;
|
|
Z = P.Z;
|
|
return *this;
|
|
}
|
|
Residue get_u() const {
|
|
return X * inverse(Z);
|
|
}
|
|
Residue get_v(bool sign_v = false) const;
|
|
bool is_infty() const {
|
|
return Z.is_zero();
|
|
}
|
|
Residue get_y() const {
|
|
return (X - Z) * inverse(X + Z);
|
|
}
|
|
bool export_point_y(unsigned char buffer[32]) const;
|
|
bool export_point_u(unsigned char buffer[32]) const;
|
|
void zeroize() {
|
|
X = Z = Z.ring_of().zero();
|
|
}
|
|
};
|
|
|
|
PointXZ power_gen_xz(const Bignum& n) const;
|
|
PointXZ power_xz(const Residue& u, const Bignum& n) const;
|
|
PointXZ power_xz(const PointXZ& P, const Bignum& n) const;
|
|
PointXZ add_xz(const PointXZ& P, const PointXZ& Q) const;
|
|
PointXZ double_xz(const PointXZ& P) const;
|
|
|
|
PointXZ import_point_u(const unsigned char point[32]) const;
|
|
PointXZ import_point_y(const unsigned char point[32]) const;
|
|
};
|
|
|
|
const MontgomeryCurve& Curve25519();
|
|
|
|
} // namespace ellcurve
|