1
0
mirror of https://github.com/danog/ton.git synced 2024-12-11 16:49:37 +01:00
ton/crypto/func/gen-abscode.cpp
2019-09-07 14:33:36 +04:00

326 lines
10 KiB
C++

/*
This file is part of TON Blockchain Library.
TON Blockchain Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
TON Blockchain Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
Copyright 2017-2019 Telegram Systems LLP
*/
#include "func.h"
namespace funC {
/*
*
* EXPRESSIONS
*
*/
Expr* Expr::copy() const {
auto res = new Expr{*this};
for (auto& arg : res->args) {
arg = arg->copy();
}
return res;
}
Expr::Expr(int c, sym_idx_t name_idx, std::initializer_list<Expr*> _arglist) : cls(c), args(std::move(_arglist)) {
sym = sym::lookup_symbol(name_idx);
if (!sym) {
}
}
void Expr::chk_rvalue(const Lexem& lem) const {
if (!is_rvalue()) {
lem.error_at("rvalue expected before `", "`");
}
}
void Expr::chk_lvalue(const Lexem& lem) const {
if (!is_lvalue()) {
lem.error_at("lvalue expected before `", "`");
}
}
void Expr::chk_type(const Lexem& lem) const {
if (!is_type()) {
lem.error_at("type expression expected before `", "`");
}
}
bool Expr::deduce_type(const Lexem& lem) {
if (e_type) {
return true;
}
switch (cls) {
case _Apply: {
if (!sym) {
return false;
}
SymVal* sym_val = dynamic_cast<SymVal*>(sym->value);
if (!sym_val || !sym_val->get_type()) {
return false;
}
std::vector<TypeExpr*> arg_types;
for (const auto& arg : args) {
arg_types.push_back(arg->e_type);
}
TypeExpr* fun_type = TypeExpr::new_map(TypeExpr::new_tensor(arg_types), TypeExpr::new_hole());
try {
unify(fun_type, sym_val->sym_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "cannot apply function " << sym->name() << " : " << sym_val->get_type() << " to arguments of type "
<< fun_type->args[0] << ": " << ue;
lem.error(os.str());
}
e_type = fun_type->args[1];
TypeExpr::remove_indirect(e_type);
return true;
}
case _VarApply: {
assert(args.size() == 2);
TypeExpr* fun_type = TypeExpr::new_map(args[1]->e_type, TypeExpr::new_hole());
try {
unify(fun_type, args[0]->e_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "cannot apply expression of type " << args[0]->e_type << " to an expression of type " << args[1]->e_type
<< ": " << ue;
lem.error(os.str());
}
e_type = fun_type->args[1];
TypeExpr::remove_indirect(e_type);
return true;
}
case _Letop: {
assert(args.size() == 2);
try {
// std::cerr << "in assignment: " << args[0]->e_type << " from " << args[1]->e_type << std::endl;
unify(args[0]->e_type, args[1]->e_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "cannot assign an expression of type " << args[1]->e_type << " to a variable or pattern of type "
<< args[0]->e_type << ": " << ue;
lem.error(os.str());
}
e_type = args[0]->e_type;
TypeExpr::remove_indirect(e_type);
return true;
}
case _LetFirst: {
assert(args.size() == 2);
TypeExpr* rhs_type = TypeExpr::new_tensor({args[0]->e_type, TypeExpr::new_hole()});
try {
// std::cerr << "in implicit assignment of a modifying method: " << rhs_type << " and " << args[1]->e_type << std::endl;
unify(rhs_type, args[1]->e_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "cannot implicitly assign an expression of type " << args[1]->e_type
<< " to a variable or pattern of type " << rhs_type << " in modifying method `" << sym::symbols.get_name(val)
<< "` : " << ue;
lem.error(os.str());
}
e_type = rhs_type->args[1];
TypeExpr::remove_indirect(e_type);
// std::cerr << "result type is " << e_type << std::endl;
return true;
}
case _CondExpr: {
assert(args.size() == 3);
auto flag_type = TypeExpr::new_atomic(_Int);
try {
unify(args[0]->e_type, flag_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "condition in a conditional expression has non-integer type " << args[0]->e_type << ": " << ue;
lem.error(os.str());
}
try {
unify(args[1]->e_type, args[2]->e_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "the two variants in a conditional expression have different types " << args[1]->e_type << " and "
<< args[2]->e_type << " : " << ue;
lem.error(os.str());
}
e_type = args[1]->e_type;
TypeExpr::remove_indirect(e_type);
return true;
}
}
return false;
}
int Expr::define_new_vars(CodeBlob& code) {
switch (cls) {
case _Tuple:
case _TypeApply: {
int res = 0;
for (const auto& x : args) {
res += x->define_new_vars(code);
}
return res;
}
case _Var:
if (val < 0) {
val = code.create_var(TmpVar::_Named, e_type, sym, &here);
return 1;
}
break;
case _Hole:
if (val < 0) {
val = code.create_var(TmpVar::_Tmp, e_type, nullptr, &here);
}
break;
}
return 0;
}
int Expr::predefine_vars() {
switch (cls) {
case _Tuple:
case _TypeApply: {
int res = 0;
for (const auto& x : args) {
res += x->predefine_vars();
}
return res;
}
case _Var:
if (!sym) {
assert(val < 0 && here.defined());
sym = sym::define_symbol(~val, false, here);
if (!sym) {
throw src::ParseError{here, std::string{"redefined variable `"} + sym::symbols.get_name(~val) + "`"};
}
sym->value = new SymVal{SymVal::_Var, -1, e_type};
return 1;
}
break;
}
return 0;
}
std::vector<var_idx_t> Expr::pre_compile(CodeBlob& code) const {
switch (cls) {
case _Tuple: {
std::vector<var_idx_t> res;
for (const auto& x : args) {
auto add = x->pre_compile(code);
res.insert(res.end(), add.cbegin(), add.cend());
}
return res;
}
case _Apply: {
assert(sym);
std::vector<var_idx_t> res;
auto func = dynamic_cast<SymValFunc*>(sym->value);
if (func && func->arg_order.size() == args.size()) {
//std::cerr << "!!! reordering " << args.size() << " arguments of " << sym->name() << std::endl;
std::vector<std::vector<var_idx_t>> add_list(args.size());
for (int i : func->arg_order) {
add_list[i] = args[i]->pre_compile(code);
}
for (const auto& add : add_list) {
res.insert(res.end(), add.cbegin(), add.cend());
}
} else {
for (const auto& x : args) {
auto add = x->pre_compile(code);
res.insert(res.end(), add.cbegin(), add.cend());
}
}
var_idx_t rv = code.create_var(TmpVar::_Tmp, e_type, nullptr, &here);
std::vector<var_idx_t> rvect{rv};
auto& op = code.emplace_back(here, Op::_Call, rvect, std::move(res), sym);
if (flags & _IsImpure) {
op.flags |= Op::_Impure;
}
return rvect;
}
case _TypeApply:
return args[0]->pre_compile(code);
case _Var:
case _Hole:
return {val};
case _VarApply:
if (args[0]->cls == _Glob) {
std::vector<var_idx_t> res = args[1]->pre_compile(code);
var_idx_t rv = code.create_var(TmpVar::_Tmp, e_type, nullptr, &here);
std::vector<var_idx_t> rvect{rv};
auto& op = code.emplace_back(here, Op::_Call, rvect, std::move(res), args[0]->sym);
if (args[0]->flags & _IsImpure) {
op.flags |= Op::_Impure;
}
return rvect;
} else {
std::vector<var_idx_t> res = args[1]->pre_compile(code);
std::vector<var_idx_t> tfunc = args[0]->pre_compile(code);
if (tfunc.size() != 1) {
throw src::Fatal{"stack tuple used as a function"};
}
res.push_back(tfunc[0]);
var_idx_t rv = code.create_var(TmpVar::_Tmp, e_type, nullptr, &here);
std::vector<var_idx_t> rvect{rv};
code.emplace_back(here, Op::_CallInd, rvect, std::move(res));
return rvect;
}
case _Const: {
var_idx_t rv = code.create_var(TmpVar::_Tmp, e_type, nullptr, &here);
std::vector<var_idx_t> rvect{rv};
code.emplace_back(here, Op::_IntConst, rvect, intval);
return rvect;
}
case _Glob: {
var_idx_t rv = code.create_var(TmpVar::_Tmp, e_type, nullptr, &here);
std::vector<var_idx_t> rvect{rv};
code.emplace_back(here, Op::_GlobVar, rvect, std::vector<var_idx_t>{}, sym);
return rvect;
}
case _Letop: {
std::vector<var_idx_t> right = args[1]->pre_compile(code);
std::vector<var_idx_t> left = args[0]->pre_compile(code);
code.emplace_back(here, Op::_Let, left, std::move(right));
return left;
}
case _LetFirst: {
var_idx_t rv = code.create_var(TmpVar::_Tmp, e_type, nullptr, &here);
std::vector<var_idx_t> right = args[1]->pre_compile(code);
std::vector<var_idx_t> left = args[0]->pre_compile(code);
left.push_back(rv);
code.emplace_back(here, Op::_Let, std::move(left), std::move(right));
return std::vector<var_idx_t>{rv};
}
case _CondExpr: {
auto cond = args[0]->pre_compile(code);
assert(cond.size() == 1);
var_idx_t rv = code.create_var(TmpVar::_Tmp, e_type, nullptr, &here);
std::vector<var_idx_t> rvect{rv};
Op& if_op = code.emplace_back(here, Op::_If, cond);
code.push_set_cur(if_op.block0);
code.emplace_back(here, Op::_Let, rvect, args[1]->pre_compile(code));
code.close_pop_cur(args[1]->here);
code.push_set_cur(if_op.block1);
code.emplace_back(here, Op::_Let, rvect, args[2]->pre_compile(code));
code.close_pop_cur(args[2]->here);
return rvect;
}
default:
std::cerr << "expression constructor is " << cls << std::endl;
throw src::Fatal{"cannot compile expression with unknown constructor"};
}
}
} // namespace funC