1
0
mirror of https://github.com/danog/ton.git synced 2024-12-02 17:38:33 +01:00
ton/crypto/common/refint.cpp
2019-09-07 14:33:36 +04:00

322 lines
7.3 KiB
C++

/*
This file is part of TON Blockchain Library.
TON Blockchain Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
TON Blockchain Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
Copyright 2017-2019 Telegram Systems LLP
*/
#include "common/refint.h"
#include <utility>
#include <iostream>
#include "td/utils/StringBuilder.h"
#include "td/utils/Slice.h"
namespace td {
template class Cnt<BigInt256>;
template class Ref<Cnt<BigInt256>>;
RefInt256 operator+(RefInt256 x, RefInt256 y) {
(x.write() += *y).normalize();
return x;
}
RefInt256 operator+(RefInt256 x, long long y) {
x.write().add_tiny(y).normalize();
return x;
}
RefInt256 operator-(RefInt256 x, RefInt256 y) {
(x.write() -= *y).normalize();
return x;
}
RefInt256 operator-(RefInt256 x, long long y) {
x.write().add_tiny(-y).normalize();
return x;
}
RefInt256 operator-(RefInt256 x) {
x.write().negate().normalize();
return x;
}
RefInt256 operator~(RefInt256 x) {
x.write().logical_not().normalize();
return x;
}
RefInt256 operator*(RefInt256 x, RefInt256 y) {
RefInt256 z{true, 0};
z.write().add_mul(*x, *y).normalize();
return z;
}
RefInt256 operator*(RefInt256 x, long long y) {
x.write().mul_short_opt(y).normalize();
return x;
}
RefInt256 operator/(RefInt256 x, RefInt256 y) {
RefInt256 quot{true};
x.write().mod_div(*y, quot.write());
quot.write().normalize();
return quot;
}
RefInt256 div(RefInt256 x, RefInt256 y, int round_mode) {
RefInt256 quot{true};
x.write().mod_div(*y, quot.write(), round_mode);
quot.write().normalize();
return quot;
}
RefInt256 operator%(RefInt256 x, RefInt256 y) {
BigInt256 quot;
x.write().mod_div(*y, quot);
return x;
}
RefInt256 mod(RefInt256 x, RefInt256 y, int round_mode) {
BigInt256 quot;
x.write().mod_div(*y, quot, round_mode);
return x;
}
std::pair<RefInt256, RefInt256> divmod(RefInt256 x, RefInt256 y, int round_mode) {
RefInt256 quot{true};
x.write().mod_div(*y, quot.write(), round_mode);
quot.write().normalize();
return std::make_pair(std::move(quot), std::move(x));
}
RefInt256 operator&(RefInt256 x, RefInt256 y) {
x.write() &= *y;
return x;
}
RefInt256 operator|(RefInt256 x, RefInt256 y) {
x.write() |= *y;
return x;
}
RefInt256 operator^(RefInt256 x, RefInt256 y) {
x.write() ^= *y;
return x;
}
RefInt256 operator<<(RefInt256 x, int y) {
(x.write() <<= y).normalize();
return x;
}
RefInt256 operator>>(RefInt256 x, int y) {
(x.write() >>= y).normalize();
return x;
}
RefInt256 rshift(RefInt256 x, int y, int round_mode) {
x.write().rshift(y, round_mode).normalize();
return x;
}
RefInt256& operator+=(RefInt256& x, RefInt256 y) {
(x.write() += *y).normalize();
return x;
}
RefInt256& operator+=(RefInt256& x, long long y) {
x.write().add_tiny(y).normalize();
return x;
}
RefInt256& operator-=(RefInt256& x, RefInt256 y) {
(x.write() -= *y).normalize();
return x;
}
RefInt256& operator-=(RefInt256& x, long long y) {
x.write().add_tiny(-y).normalize();
return x;
}
RefInt256& operator*=(RefInt256& x, RefInt256 y) {
RefInt256 z{true, 0};
z.write().add_mul(*x, *y).normalize();
return x = z;
}
RefInt256& operator*=(RefInt256& x, long long y) {
x.write().mul_short_opt(y).normalize();
return x;
}
RefInt256& operator/=(RefInt256& x, RefInt256 y) {
RefInt256 quot{true};
x.write().mod_div(*y, quot.write());
quot.write().normalize();
return x = quot;
}
RefInt256& operator%=(RefInt256& x, RefInt256 y) {
BigInt256 quot;
x.write().mod_div(*y, quot);
return x;
}
RefInt256& operator&=(RefInt256& x, RefInt256 y) {
x.write() &= *y;
return x;
}
RefInt256& operator|=(RefInt256& x, RefInt256 y) {
x.write() |= *y;
return x;
}
RefInt256& operator^=(RefInt256& x, RefInt256 y) {
x.write() ^= *y;
return x;
}
RefInt256& operator<<=(RefInt256& x, int y) {
(x.write() <<= y).normalize();
return x;
}
RefInt256& operator>>=(RefInt256& x, int y) {
(x.write() >>= y).normalize();
return x;
}
int cmp(RefInt256 x, RefInt256 y) {
return x->cmp(*y);
}
int cmp(RefInt256 x, long long y) {
return x->cmp(y);
}
int sgn(RefInt256 x) {
return x->sgn();
}
extern RefInt256 make_refint(long long x) {
auto xx = td::RefInt256{true, x};
xx.unique_write().normalize();
return xx;
}
std::string dec_string(RefInt256 x) {
return x.is_null() ? "(null)" : (x.is_unique() ? x.unique_write().to_dec_string_destroy() : x->to_dec_string());
}
std::string dec_string2(RefInt256&& x) {
return x.is_null() ? "(null)" : (x.is_unique() ? x.unique_write().to_dec_string_destroy() : x->to_dec_string());
}
std::string hex_string(RefInt256 x, bool upcase) {
return x.is_null() ? "(null)" : x->to_hex_string(upcase);
}
std::string binary_string(RefInt256 x) {
return x.is_null() ? "(null)" : x->to_binary_string();
}
std::ostream& operator<<(std::ostream& os, const RefInt256& x) {
//std::cout << "<a|";
return os << dec_string(std::move(x));
//std::cout << "|a>";
//return os;
}
std::ostream& operator<<(std::ostream& os, RefInt256&& x) {
//std::cout << "<A|";
return os << dec_string2(std::move(x));
//std::cout << "|A>";
//return os;
}
StringBuilder& operator<<(StringBuilder& sb, const RefInt256& x) {
return sb << dec_string(x);
}
RefInt256 dec_string_to_int256(const std::string& s) {
return dec_string_to_int256(td::Slice{s});
}
RefInt256 dec_string_to_int256(td::Slice s) {
if (s.size() > 255) {
return {};
}
RefInt256 x{true};
if (x.unique_write().parse_dec(s.begin(), (int)s.size()) == (int)s.size()) {
return x;
} else {
return {};
}
}
RefInt256 hex_string_to_int256(const std::string& s) {
return hex_string_to_int256(td::Slice{s});
}
RefInt256 hex_string_to_int256(td::Slice s) {
if (s.size() > 255) {
return {};
}
RefInt256 x{true};
if (x.unique_write().parse_hex(s.begin(), (int)s.size()) == (int)s.size()) {
return x;
} else {
return {};
}
}
RefInt256 string_to_int256(const std::string& s) {
return string_to_int256(td::Slice{s});
}
RefInt256 string_to_int256(td::Slice s) {
if (s.size() >= 3 && s[0] == '-' && s[1] == '0' && s[2] == 'x') {
auto x = hex_string_to_int256(td::Slice(s.begin() + 3, s.end()));
if (x.not_null()) {
x.write().negate();
}
return x;
} else if (s.size() >= 2 && s[0] == '0' && s[1] == 'x') {
return hex_string_to_int256(td::Slice(s.begin() + 2, s.end()));
} else {
return dec_string_to_int256(s);
}
}
namespace literals {
RefInt256 operator""_ri256(const char* str, std::size_t str_len) {
RefInt256 x{true};
x->enforce(x.unique_write().parse_dec(str, (int)str_len) == (int)str_len);
return x;
}
RefInt256 operator""_rx256(const char* str, std::size_t str_len) {
RefInt256 x{true};
x->enforce(x.unique_write().parse_hex(str, (int)str_len) == (int)str_len);
return x;
}
} // namespace literals
} // namespace td