1
0
mirror of https://github.com/danog/ton.git synced 2024-12-11 16:49:37 +01:00
ton/tdutils/td/utils/port/IPAddress.cpp
2019-09-07 14:33:36 +04:00

623 lines
18 KiB
C++

/*
This file is part of TON Blockchain Library.
TON Blockchain Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
TON Blockchain Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
Copyright 2017-2019 Telegram Systems LLP
*/
#define _WINSOCK_DEPRECATED_NO_WARNINGS // we need to use inet_addr instead of inet_pton
#include "td/utils/port/IPAddress.h"
#include "td/utils/format.h"
#include "td/utils/logging.h"
#include "td/utils/misc.h"
#include "td/utils/port/SocketFd.h"
#include "td/utils/port/thread_local.h"
#include "td/utils/ScopeGuard.h"
#include "td/utils/Slice.h"
#include "td/utils/utf8.h"
#if TD_WINDOWS
#include "td/utils/port/wstring_convert.h"
#else
#include <netdb.h>
#include <netinet/tcp.h>
#include <sys/types.h>
#endif
#include <cstring>
#include <limits>
namespace td {
static bool is_ascii_host_char(char c) {
return static_cast<unsigned char>(c) <= 127;
}
static bool is_ascii_host(Slice host) {
for (auto c : host) {
if (!is_ascii_host_char(c)) {
return false;
}
}
return true;
}
#if !TD_WINDOWS
static void punycode(string &result, Slice part) {
vector<uint32> codes;
codes.reserve(utf8_length(part));
uint32 processed = 0;
auto begin = part.ubegin();
auto end = part.uend();
while (begin != end) {
uint32 code;
begin = next_utf8_unsafe(begin, &code, "punycode");
if (code <= 127u) {
result += to_lower(static_cast<char>(code));
processed++;
}
codes.push_back(code);
}
if (processed > 0) {
result += '-';
}
uint32 n = 127;
uint32 delta = 0;
int bias = -72;
bool is_first = true;
while (processed < codes.size()) {
// choose lowest not processed code
uint32 next_n = 0x110000;
for (auto code : codes) {
if (code > n && code < next_n) {
next_n = code;
}
}
delta += (next_n - n - 1) * (processed + 1);
for (auto code : codes) {
if (code < next_n) {
delta++;
}
if (code == next_n) {
// found next symbol, encode delta
int left = static_cast<int>(delta);
while (true) {
bias += 36;
auto t = clamp(bias, 1, 26);
if (left < t) {
result += static_cast<char>(left + 'a');
break;
}
left -= t;
auto digit = t + left % (36 - t);
result += static_cast<char>(digit < 26 ? digit + 'a' : digit - 26 + '0');
left /= 36 - t;
}
processed++;
// update bias
if (is_first) {
delta /= 700;
is_first = false;
} else {
delta /= 2;
}
delta += delta / processed;
bias = 0;
while (delta > 35 * 13) {
delta /= 35;
bias -= 36;
}
bias -= static_cast<int>(36 * delta / (delta + 38));
delta = 0;
}
}
delta++;
n = next_n;
}
}
#endif
Result<string> idn_to_ascii(CSlice host) {
if (is_ascii_host(host)) {
return to_lower(host);
}
if (!check_utf8(host)) {
return Status::Error("Host name must be encoded in UTF-8");
}
const int MAX_DNS_NAME_LENGTH = 255;
if (host.size() >= MAX_DNS_NAME_LENGTH * 4) { // upper bound, 4 characters per symbol
return Status::Error("Host name is too long");
}
#if TD_WINDOWS
TRY_RESULT(whost, to_wstring(host));
wchar_t punycode[MAX_DNS_NAME_LENGTH + 1];
int result_length =
IdnToAscii(IDN_ALLOW_UNASSIGNED, whost.c_str(), narrow_cast<int>(whost.size()), punycode, MAX_DNS_NAME_LENGTH);
if (result_length == 0) {
return Status::Error("Host can't be converted to ASCII");
}
TRY_RESULT(idn_host, from_wstring(punycode, result_length));
return idn_host;
#else
auto parts = full_split(Slice(host), '.');
bool is_first = true;
string result;
result.reserve(host.size());
for (auto part : parts) {
if (!is_first) {
result += '.';
}
if (is_ascii_host(part)) {
result.append(part.data(), part.size());
} else {
// TODO nameprep should be applied first, but punycode is better than nothing.
// It is better to use libidn/ICU here if available
result += "xn--";
punycode(result, part);
}
is_first = false;
}
return result;
#endif
}
static CSlice get_ip_str(int family, const void *addr) {
const int buf_size = INET6_ADDRSTRLEN;
static TD_THREAD_LOCAL char *buf;
init_thread_local<char[]>(buf, buf_size);
const char *res = inet_ntop(family,
#if TD_WINDOWS
const_cast<PVOID>(addr),
#else
addr,
#endif
buf, buf_size);
if (res == nullptr) {
return CSlice();
} else {
return CSlice(res);
}
}
IPAddress::IPAddress() : is_valid_(false) {
}
bool IPAddress::is_valid() const {
return is_valid_;
}
bool IPAddress::is_reserved() const {
CHECK(is_valid());
if (is_ipv6()) {
// TODO proper check for reserved IPv6 addresses
return true;
}
uint32 ip = get_ipv4();
struct IpBlock {
CSlice ip;
int mask;
IpBlock(CSlice ip, int mask) : ip(ip), mask(mask) {
}
};
static const IpBlock blocks[] = {{"0.0.0.0", 8}, {"10.0.0.0", 8}, {"100.64.0.0", 10}, {"127.0.0.0", 8},
{"169.254.0.0", 16}, {"172.16.0.0", 12}, {"192.0.0.0", 24}, {"192.0.2.0", 24},
{"192.88.99.0", 24}, {"192.168.0.0", 16}, {"198.18.0.0", 15}, {"198.51.100.0", 24},
{"203.0.113.0", 24}, {"224.0.0.0", 3}};
for (auto &block : blocks) {
IPAddress block_ip_address;
block_ip_address.init_ipv4_port(block.ip, 80).ensure();
uint32 range = block_ip_address.get_ipv4();
CHECK(block.mask != 0);
uint32 mask = std::numeric_limits<uint32>::max() >> (32 - block.mask) << (32 - block.mask);
if ((ip & mask) == (range & mask)) {
return true;
}
}
return false;
}
const sockaddr *IPAddress::get_sockaddr() const {
CHECK(is_valid());
return &sockaddr_;
}
size_t IPAddress::get_sockaddr_len() const {
CHECK(is_valid());
switch (sockaddr_.sa_family) {
case AF_INET6:
return sizeof(ipv6_addr_);
case AF_INET:
return sizeof(ipv4_addr_);
default:
LOG(FATAL) << "Unknown address family";
return 0;
}
}
int IPAddress::get_address_family() const {
return get_sockaddr()->sa_family;
}
bool IPAddress::is_ipv4() const {
return is_valid() && get_address_family() == AF_INET;
}
bool IPAddress::is_ipv6() const {
return is_valid() && get_address_family() == AF_INET6;
}
uint32 IPAddress::get_ipv4() const {
CHECK(is_valid());
CHECK(is_ipv4());
return htonl(ipv4_addr_.sin_addr.s_addr);
}
Slice IPAddress::get_ipv6() const {
static_assert(sizeof(ipv6_addr_.sin6_addr) == 16, "ipv6 size == 16");
CHECK(is_valid());
CHECK(!is_ipv4());
return Slice(ipv6_addr_.sin6_addr.s6_addr, 16);
}
IPAddress IPAddress::get_any_addr() const {
IPAddress res;
switch (get_address_family()) {
case AF_INET6:
res.init_ipv6_any();
break;
case AF_INET:
res.init_ipv4_any();
break;
default:
LOG(FATAL) << "Unknown address family";
}
return res;
}
void IPAddress::init_ipv4_any() {
is_valid_ = true;
std::memset(&ipv4_addr_, 0, sizeof(ipv4_addr_));
ipv4_addr_.sin_family = AF_INET;
ipv4_addr_.sin_addr.s_addr = INADDR_ANY;
ipv4_addr_.sin_port = 0;
}
void IPAddress::init_ipv6_any() {
is_valid_ = true;
std::memset(&ipv6_addr_, 0, sizeof(ipv6_addr_));
ipv6_addr_.sin6_family = AF_INET6;
ipv6_addr_.sin6_addr = in6addr_any;
ipv6_addr_.sin6_port = 0;
}
Status IPAddress::init_ipv6_port(CSlice ipv6, int port) {
is_valid_ = false;
if (port <= 0 || port >= (1 << 16)) {
return Status::Error(PSLICE() << "Invalid [port=" << port << "]");
}
std::memset(&ipv6_addr_, 0, sizeof(ipv6_addr_));
ipv6_addr_.sin6_family = AF_INET6;
ipv6_addr_.sin6_port = htons(static_cast<uint16>(port));
int err = inet_pton(AF_INET6, ipv6.c_str(), &ipv6_addr_.sin6_addr);
if (err == 0) {
return Status::Error(PSLICE() << "Failed inet_pton(AF_INET6, " << ipv6 << ")");
} else if (err == -1) {
return OS_SOCKET_ERROR(PSLICE() << "Failed inet_pton(AF_INET6, " << ipv6 << ")");
}
is_valid_ = true;
return Status::OK();
}
Status IPAddress::init_ipv6_as_ipv4_port(CSlice ipv4, int port) {
return init_ipv6_port(string("::FFFF:").append(ipv4.begin(), ipv4.size()), port);
}
Status IPAddress::init_ipv4_port(CSlice ipv4, int port) {
is_valid_ = false;
if (port <= 0 || port >= (1 << 16)) {
return Status::Error(PSLICE() << "Invalid [port=" << port << "]");
}
std::memset(&ipv4_addr_, 0, sizeof(ipv4_addr_));
ipv4_addr_.sin_family = AF_INET;
ipv4_addr_.sin_port = htons(static_cast<uint16>(port));
int err = inet_pton(AF_INET, ipv4.c_str(), &ipv4_addr_.sin_addr);
if (err == 0) {
return Status::Error(PSLICE() << "Failed inet_pton(AF_INET, " << ipv4 << ")");
} else if (err == -1) {
return OS_SOCKET_ERROR(PSLICE() << "Failed inet_pton(AF_INET, " << ipv4 << ")");
}
is_valid_ = true;
return Status::OK();
}
Result<IPAddress> IPAddress::get_ipv4_address(CSlice host) {
// sometimes inet_addr allows much more valid IPv4 hosts than inet_pton,
// like 0x12.0x34.0x56.0x78, or 0x12345678, or 0x7f.001
auto ipv4_numeric_addr = inet_addr(host.c_str());
if (ipv4_numeric_addr == INADDR_NONE) {
return Status::Error("Host is not valid IPv4 address");
}
host = ::td::get_ip_str(AF_INET, &ipv4_numeric_addr);
IPAddress result;
auto status = result.init_ipv4_port(host, 1);
if (status.is_error()) {
return std::move(status);
}
return std::move(result);
}
Result<IPAddress> IPAddress::get_ipv6_address(CSlice host) {
IPAddress result;
auto status = result.init_ipv6_port(host, 1);
if (status.is_error()) {
return std::move(status);
}
return std::move(result);
}
Status IPAddress::init_host_port(CSlice host, int port, bool prefer_ipv6) {
return init_host_port(host, PSLICE() << port, prefer_ipv6);
}
Status IPAddress::init_host_port(CSlice host, CSlice port, bool prefer_ipv6) {
is_valid_ = false;
if (host.empty()) {
return Status::Error("Host is empty");
}
#if TD_WINDOWS
if (host == "..localmachine") {
return Status::Error("Host is invalid");
}
#endif
TRY_RESULT(ascii_host, idn_to_ascii(host));
host = ascii_host;
// some getaddrinfo implementations use inet_pton instead of inet_aton and support only decimal-dotted IPv4 form,
// and so doesn't recognize 0x12.0x34.0x56.0x78, or 0x12345678, or 0x7f.001 as valid IPv4 addresses
auto ipv4_numeric_addr = inet_addr(host.c_str());
if (ipv4_numeric_addr != INADDR_NONE) {
host = ::td::get_ip_str(AF_INET, &ipv4_numeric_addr);
}
addrinfo hints;
addrinfo *info = nullptr;
std::memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
LOG(DEBUG + 10) << "Try to init IP address of " << host << " with port " << port;
auto err = getaddrinfo(host.c_str(), port.c_str(), &hints, &info);
if (err != 0) {
#if TD_WINDOWS
return OS_SOCKET_ERROR("Failed to resolve host");
#else
return Status::Error(PSLICE() << "Failed to resolve host: " << gai_strerror(err));
#endif
}
SCOPE_EXIT {
freeaddrinfo(info);
};
addrinfo *best_info = nullptr;
for (auto *ptr = info; ptr != nullptr; ptr = ptr->ai_next) {
if (ptr->ai_family == AF_INET && (!prefer_ipv6 || best_info == nullptr)) {
// just use first IPv4 address if there is no IPv6 and it isn't preferred
best_info = ptr;
if (!prefer_ipv6) {
break;
}
}
if (ptr->ai_family == AF_INET6 && (prefer_ipv6 || best_info == nullptr)) {
// or first IPv6 address if there is no IPv4 and it isn't preferred
best_info = ptr;
if (prefer_ipv6) {
break;
}
}
}
if (best_info == nullptr) {
return Status::Error("Failed to find IPv4/IPv6 address");
}
return init_sockaddr(best_info->ai_addr, narrow_cast<socklen_t>(best_info->ai_addrlen));
}
Status IPAddress::init_host_port(CSlice host_port) {
auto pos = host_port.rfind(':');
if (pos == static_cast<size_t>(-1)) {
return Status::Error("Can't split string into host and port");
}
return init_host_port(host_port.substr(0, pos).str(), host_port.substr(pos + 1).str());
}
Status IPAddress::init_sockaddr(sockaddr *addr) {
if (addr->sa_family == AF_INET6) {
return init_sockaddr(addr, sizeof(ipv6_addr_));
} else if (addr->sa_family == AF_INET) {
return init_sockaddr(addr, sizeof(ipv4_addr_));
} else {
return init_sockaddr(addr, 0);
}
}
Status IPAddress::init_sockaddr(sockaddr *addr, socklen_t len) {
if (addr->sa_family == AF_INET6) {
CHECK(len == sizeof(ipv6_addr_));
std::memcpy(&ipv6_addr_, reinterpret_cast<sockaddr_in6 *>(addr), sizeof(ipv6_addr_));
} else if (addr->sa_family == AF_INET) {
CHECK(len == sizeof(ipv4_addr_));
std::memcpy(&ipv4_addr_, reinterpret_cast<sockaddr_in *>(addr), sizeof(ipv4_addr_));
} else {
return Status::Error(PSLICE() << "Unknown " << tag("sa_family", addr->sa_family));
}
is_valid_ = true;
LOG(DEBUG + 10) << "Have address " << get_ip_str() << " with port " << get_port();
return Status::OK();
}
Status IPAddress::init_socket_address(const SocketFd &socket_fd) {
is_valid_ = false;
auto socket = socket_fd.get_native_fd().socket();
socklen_t len = storage_size();
int ret = getsockname(socket, &sockaddr_, &len);
if (ret != 0) {
return OS_SOCKET_ERROR("Failed to get socket address");
}
is_valid_ = true;
return Status::OK();
}
Status IPAddress::init_peer_address(const SocketFd &socket_fd) {
is_valid_ = false;
auto socket = socket_fd.get_native_fd().socket();
socklen_t len = storage_size();
int ret = getpeername(socket, &sockaddr_, &len);
if (ret != 0) {
return OS_SOCKET_ERROR("Failed to get peer socket address");
}
is_valid_ = true;
return Status::OK();
}
CSlice IPAddress::ipv4_to_str(uint32 ipv4) {
ipv4 = ntohl(ipv4);
return ::td::get_ip_str(AF_INET, &ipv4);
}
CSlice IPAddress::ipv6_to_str(Slice ipv6) {
CHECK(ipv6.size() == 16);
return ::td::get_ip_str(AF_INET6, ipv6.ubegin());
}
Slice IPAddress::get_ip_str() const {
if (!is_valid()) {
return Slice("0.0.0.0");
}
switch (get_address_family()) {
case AF_INET6:
return ::td::get_ip_str(AF_INET6, &ipv6_addr_.sin6_addr);
case AF_INET:
return ::td::get_ip_str(AF_INET, &ipv4_addr_.sin_addr);
default:
UNREACHABLE();
return Slice();
}
}
int IPAddress::get_port() const {
if (!is_valid()) {
return 0;
}
switch (get_address_family()) {
case AF_INET6:
return ntohs(ipv6_addr_.sin6_port);
case AF_INET:
return ntohs(ipv4_addr_.sin_port);
default:
UNREACHABLE();
return 0;
}
}
void IPAddress::set_port(int port) {
CHECK(is_valid());
switch (get_address_family()) {
case AF_INET6:
ipv6_addr_.sin6_port = htons(static_cast<uint16>(port));
break;
case AF_INET:
ipv4_addr_.sin_port = htons(static_cast<uint16>(port));
break;
default:
UNREACHABLE();
}
}
bool operator==(const IPAddress &a, const IPAddress &b) {
if (!a.is_valid() || !b.is_valid()) {
return !a.is_valid() && !b.is_valid();
}
if (a.get_address_family() != b.get_address_family()) {
return false;
}
if (a.get_address_family() == AF_INET) {
return a.ipv4_addr_.sin_port == b.ipv4_addr_.sin_port &&
std::memcmp(&a.ipv4_addr_.sin_addr, &b.ipv4_addr_.sin_addr, sizeof(a.ipv4_addr_.sin_addr)) == 0;
} else if (a.get_address_family() == AF_INET6) {
return a.ipv6_addr_.sin6_port == b.ipv6_addr_.sin6_port &&
std::memcmp(&a.ipv6_addr_.sin6_addr, &b.ipv6_addr_.sin6_addr, sizeof(a.ipv6_addr_.sin6_addr)) == 0;
}
LOG(FATAL) << "Unknown address family";
return false;
}
bool operator<(const IPAddress &a, const IPAddress &b) {
if (!a.is_valid() || !b.is_valid()) {
return !a.is_valid() && b.is_valid();
}
if (a.get_address_family() != b.get_address_family()) {
return a.get_address_family() < b.get_address_family();
}
if (a.get_address_family() == AF_INET) {
if (a.ipv4_addr_.sin_port != b.ipv4_addr_.sin_port) {
return a.ipv4_addr_.sin_port < b.ipv4_addr_.sin_port;
}
return std::memcmp(&a.ipv4_addr_.sin_addr, &b.ipv4_addr_.sin_addr, sizeof(a.ipv4_addr_.sin_addr)) < 0;
} else if (a.get_address_family() == AF_INET6) {
if (a.ipv6_addr_.sin6_port != b.ipv6_addr_.sin6_port) {
return a.ipv6_addr_.sin6_port < b.ipv6_addr_.sin6_port;
}
return std::memcmp(&a.ipv6_addr_.sin6_addr, &b.ipv6_addr_.sin6_addr, sizeof(a.ipv6_addr_.sin6_addr)) < 0;
}
LOG(FATAL) << "Unknown address family";
return false;
}
StringBuilder &operator<<(StringBuilder &builder, const IPAddress &address) {
if (!address.is_valid()) {
return builder << "[invalid]";
}
if (address.get_address_family() == AF_INET) {
return builder << "[" << address.get_ip_str() << ":" << address.get_port() << "]";
} else {
CHECK(address.get_address_family() == AF_INET6);
return builder << "[[" << address.get_ip_str() << "]:" << address.get_port() << "]";
}
}
} // namespace td