Go to file
2023-05-19 12:34:54 +03:00
.github/workflows Add --show-diff for Windows CI test 2023-03-29 14:43:54 +03:00
dynasm Add "endbr" instruction 2022-10-27 11:13:50 +03:00
tests Fix Win64 tests 2023-05-17 22:49:26 +03:00
win32 [ir-test]: Enhance ir-test for Linux and Windows 2023-04-19 19:33:36 +08:00
.gitignore gitignore: Extend with some win32/ paths 2023-02-24 22:17:36 +01:00
example.svg Improve graph visualization 2023-03-23 03:22:13 +03:00
gen_ir_fold_hash.c Fix most MSVC compilation warnings 2023-02-28 02:11:09 +03:00
ir_aarch64.dasc Ceanup ir_compute_live_ranges() implementation 2023-05-19 12:34:54 +03:00
ir_aarch64.h Add necessary compensation loads for bounded nodes when enter into function through OSR entry-point 2023-03-21 13:45:37 +03:00
ir_builder.h Added missing argument 2023-05-16 13:17:55 +03:00
ir_cfg.c Avoid loop nesting forest consruction if we didn't detect loops in ir_build_dominators_tree() 2023-04-27 18:00:30 +03:00
ir_check.c Add ir_insn_len() and ir_insn_inputs_to_len() private helpers 2023-04-21 13:40:55 +03:00
ir_cpuinfo.c Use ir_ctx.mflags for CPU specific code-generation options 2023-04-18 09:54:35 +03:00
ir_disasm.c Fixed disassembler output 2023-05-17 09:59:48 +03:00
ir_dump.c Add ir_insn_len() and ir_insn_inputs_to_len() private helpers 2023-04-21 13:40:55 +03:00
ir_elf.h Add LICENSE and copyright notices 2022-11-08 11:32:46 +03:00
ir_emit_c.c Add ir_insn_len() and ir_insn_inputs_to_len() private helpers 2023-04-21 13:40:55 +03:00
ir_emit.c Avoid live range constrction for VARs 2023-05-18 21:00:57 +03:00
ir_fold.h Simplify access to nodes with variable inputs count 2023-04-21 12:40:17 +03:00
ir_gcm.c Introduce IR_OP_FLAG_PINNED and IR_BB_HAS_PHI/PI/PARAM/VAR flags 2023-05-05 16:59:22 +03:00
ir_gdb.c Re-implement instruction fusion and live-range construction 2023-04-05 19:20:43 +03:00
ir_load.c [ir_load]: Make report_undefined_var() static 2023-05-10 19:41:18 +08:00
ir_main.c [ir_main]: print default optimization level in help message 2023-05-10 19:41:18 +08:00
ir_patch.c Prefer IR_TARGET_* checks instead of system specific macros 2023-03-28 13:40:44 +03:00
ir_perf.c Add LICENSE and copyright notices 2022-11-08 11:32:46 +03:00
ir_php.h Add LICENSE and copyright notices 2022-11-08 11:32:46 +03:00
ir_private.h Avoid live range constrction for VARs 2023-05-18 21:00:57 +03:00
ir_ra.c Ceanup ir_compute_live_ranges() implementation 2023-05-19 12:34:54 +03:00
ir_save.c Add ir_insn_len() and ir_insn_inputs_to_len() private helpers 2023-04-21 13:40:55 +03:00
ir_sccp.c Avoid CFG reachability check after SCCP 2023-04-27 14:18:39 +03:00
ir_strtab.c [ir_strtab]: Make ir_str_hash() static 2023-05-10 19:41:18 +08:00
ir_test.c Avoid CFG reachability check after SCCP 2023-04-27 14:18:39 +03:00
ir_x86.dasc Ceanup ir_compute_live_ranges() implementation 2023-05-19 12:34:54 +03:00
ir_x86.h Use ir_ctx.mflags for CPU specific code-generation options 2023-04-18 09:54:35 +03:00
ir-test.cxx [ir-test]: Fix #25: use 'fc.exe' for diff on Windows 2023-04-23 10:38:39 +08:00
ir-test.php Hide Windows fault message box on Windows during make test 2023-03-07 10:54:46 +03:00
ir.c Fix typo and avoid copying of unused tail 2023-05-15 18:06:04 +03:00
ir.g [ir_load]: Make report_undefined_var() static 2023-05-10 19:41:18 +08:00
ir.h Avoid live range constrction for VARs 2023-05-18 21:00:57 +03:00
LICENSE Add LICENSE and copyright notices 2022-11-08 11:32:46 +03:00
Makefile Fix linkage to libdl 2023-05-08 00:26:45 +08:00
README.md Fix example code and test 2023-03-23 00:54:47 +03:00
test.ir Remove a "reference" edge from LOOP_END to LOOP_BEGIN node. 2023-03-23 00:47:27 +03:00
TODO Update tasks 2023-04-14 10:45:56 +03:00

IR - Lightweight JIT Compilation Framework

The main task of this framework is transformation of the IR (Intermediate Representation) into an optimized in-memory target machine code, that may be directly executed.

This is not a stable finished product yet. Its used as a base for development of the next generation JIT compiler for PHP-9. There are a lot of required things are not implemented yet.

IR - Intermediate Representation

The Framework uses single Medium level Intermediate Representation during all phases of optimization, register allocation and code generation. It is inspired by Sea-Of-Nodes introduced by Cliff Click [1]. Sea-Of-Nodes is used in Java HotSpot Server Compiler, V8 TurboFan JavaScript Compiler, Java Graal Compiler...

This representation unifies data and control dependencies into a single graph, where each instruction represented as a Node and each dependency as an Edge between Nodes. There are no classical CFG (Control Flow Graph) with Basic Blocks. Instead, IR uses special Control Nodes that start and finish some code Regions. The data part of the IR is very similar to SSA (Static Single Assignment) form. Each variable may be assigned only once, but except to SSA, in our IR, we dont have any variables, their versions and name. Everything is represented by computation Nodes and Edges between them. Of course, we have special PHI Node that represents the Phi() function.

Despite, our IR is graph based, internally, its represented as a plain two-way grow-able array of Nodes. Dependency Edge are represented as indexes of the other Node. This physical representation is almost completely repeats the LuaJIT IR designed by Mike Pall [3].

IR Generation

TODO...

IR Optimization

In comparison to classical optimizing compilers (like GCC and LLVM), IR Framework uses very short optimization pipeline. Together with compact IR representation, this makes it extremely fast and allows to generate quite good machine code in reasonable time.

Folding

Folding is done on the fly, during IR generation. It performs a set of local transformations, but because of the graph nature of the IR where most data operations (like ADD) are “floating” (not “pinned” to Basic Block), the scope of transformations is not limited by Basic Block. Its important to generate IR in a proper (Reverse Post) order, that would emit all Nodes before their first usage. (In case of different order the scope of the folding should be limited).

Folding Engine performs Constants Folding, Copy Propagation, Algebraic Simplifications, Algebraic Re-Association and Common Sub-Expression Elimination. The simple and fast declarative implementation is borrowed from LuaJIT [3].

Sparse Conditional Constant Propagation

This pass implements a classical algorithm originally designed by M. N. Wegman and F. K. Zadeck [4] for SSA form. Unification of data and control dependencies made its implementation even simple. Despite of constant propagation itself this pass also performs global Copy Propagation and re-applies the folding rules. At the end all the “dead” instructions (instructions that result are not used) are replaced with NOPs.

Global Code Motion

Now we have to “fix” places of “floating” instructions. This pass builds CFG (Control Flow Graph) skeleton and then ”pin” each “floating” instruction to the best Basic Block. The algorithm is developed by Cliff Click [2].

Local Scheduling

As the final IR transformation pass, we reorder instructions inside each Basic Block to satisfy the dependencies. Currently this is done by a simple topological sorting.

Target Instruction Selection

This is the first target dependent step of compilation. It aims to combine instruction Nodes into tiles that allows better instruction fusion. For example 10 + a + b * 4 may be calculated by a single x86 instruction lea 10(%eax, %ebx, 4), %ecx. The selection is done by a constrained tree pattern matching. The current implementation uses simple Max-Munch approach. (This may be replaced by a smarter BURS method).

Register Allocation

CPU independent implementation of Linear Scan Register Allocation for SSA form with second chance bin-packing. [5] [6]

Machine Code Generations

IR Framework implements X86_64, x86 and AAtch64 back-ends. The current implementation uses DynAsm [?]. (In the future, this should be replaced with a faster “binary” encoder). Code generator walks throw all instructions of each basic blocks and emits some code according to “rules” selected during instruction selection pass. It uses registers, selected by register allocator and inserts the necessary spill load/store and SSA deconstruction code.

Tooling

  • Ability to load and save IR in a textual form
  • Ability to visualize IR graph through graphviz dot.
  • Target CPU disassembler for generated code (uses libcapstone [?])
  • GDB/JIT interface to allow debugging of JIT-ed code
  • Linux perf interface to analyze the code performance

IR Example

Let's try to generate code for the following function:

int32_t mandelbrot(double x, double y)
{
	double cr = y - 0.5;
	double ci = x;
	double zi = 0.0;
	double zr = 0.0;
	int i = 0;

	while(1) {
		i++;
		double temp = zr * zi;
		double zr2 = zr * zr;
		double zi2 = zi * zi;
		zr = zr2 - zi2 + cr;
		zi = temp + temp + ci;
		if (zi2 + zr2 > 16)
			return i;
		if (i > 1000)
			return 0;
	}
	
}

This may be done through IR construction API by the following code:

void gen_mandelbrot(ir_ctx *ctx)
{
	ir_START();
	ir_ref x = ir_PARAM(IR_DOUBLE, "x", 1);
	ir_ref y = ir_PARAM(IR_DOUBLE, "y", 2);
	ir_ref cr = ir_SUB_D(y, ir_CONST_DOUBLE(0.5));
	ir_ref ci = ir_COPY_D(x);
	ir_ref zi = ir_COPY_D(ir_CONST_DOUBLE(0.0));
	ir_ref zr = ir_COPY_D(ir_CONST_DOUBLE(0.0));
	ir_ref i = ir_COPY_D(ir_CONST_I32(0));

	ir_ref loop = ir_LOOP_BEGIN(ir_END());
		ir_ref zi_1 = ir_PHI_2(zi, IR_UNUSED);
		ir_ref zr_1 = ir_PHI_2(zr, IR_UNUSED);
		ir_ref i_1 = ir_PHI_2(i, IR_UNUSED);

		ir_ref i_2 = ir_ADD_I32(i_1, ir_CONST_I32(1));
		ir_ref temp = ir_MUL_D(zr_1, zi_1);
		ir_ref zr2 = ir_MUL_D(zr_1, zr_1);
		ir_ref zi2 = ir_MUL_D(zi_1, zi_1);
		ir_ref zr_2 = ir_ADD_D(ir_SUB_D(zr2, zi2), cr);
		ir_ref zi_2 = ir_ADD_D(ir_ADD_D(temp, temp), ci);
		ir_ref if_1 = ir_IF(ir_GT(ir_ADD_D(zi2, zr2), ir_CONST_DOUBLE(16.0)));
			ir_IF_TRUE(if_1);
				ir_RETURN(i_2);
			ir_IF_FALSE(if_1);
				ir_ref if_2 = ir_IF(ir_GT(i_2, ir_CONST_I32(1000)));
				ir_IF_TRUE(if_2);
					ir_RETURN(ir_CONST_I32(0));
				ir_IF_FALSE(if_2);
					ir_ref loop_end = ir_LOOP_END();

	/* close loop */
	ir_MERGE_SET_OP(loop, 2, loop_end);
	ir_PHI_SET_OP(zi_1, 2, zi_2);
	ir_PHI_SET_OP(zr_1, 2, zr_2);
	ir_PHI_SET_OP(i_1, 2, i_2);
}

The textual representation of the IR after system independent optimizations:

{
	uintptr_t c_1 = 0;
	bool c_2 = 0;
	bool c_3 = 1;
	double c_4 = 0.5;
	double c_5 = 0;
	int32_t c_6 = 0;
	int32_t c_7 = 1;
	double c_8 = 16;
	int32_t c_9 = 1000;
	l_1 = START(l_22);
	double d_2 = PARAM(l_1, "x", 1);
	double d_3 = PARAM(l_1, "y", 2);
	double d_4 = SUB(d_3, c_4);
	l_5 = END(l_1);
	l_6 = LOOP_BEGIN(l_5, l_29);
	double d_7 = PHI(l_6, c_5, d_28);
	double d_8 = PHI(l_6, c_5, d_26);
	int32_t d_9 = PHI(l_6, c_6, d_10);
	int32_t d_10 = ADD(d_9, c_7);
	double d_11 = MUL(d_8, d_8);
	double d_12 = MUL(d_7, d_7);
	double d_13 = ADD(d_12, d_11);
	bool d_14 = GT(d_13, c_8);
	l_15 = IF(l_6, d_14);
	l_16 = IF_TRUE(l_15);
	l_17 = RETURN(l_16, d_10);
	l_18 = IF_FALSE(l_15);
	bool d_19 = GT(d_10, c_9);
	l_20 = IF(l_18, d_19);
	l_21 = IF_TRUE(l_20);
	l_22 = RETURN(l_21, c_6, l_17);
	l_23 = IF_FALSE(l_20);
	double d_24 = MUL(d_7, d_8);
	double d_25 = SUB(d_11, d_12);
	double d_26 = ADD(d_25, d_4);
	double d_27 = ADD(d_24, d_24);
	double d_28 = ADD(d_27, d_2);
	l_29 = LOOP_END(l_23);
}

The visualized graph:

IR example

The final generated code:

test:
	subsd .L4(%rip), %xmm1
	xorpd %xmm3, %xmm3
	xorpd %xmm2, %xmm2
	xorl %eax, %eax
.L1:
	leal 1(%rax), %eax
	movapd %xmm2, %xmm4
	mulsd %xmm2, %xmm4
	movapd %xmm3, %xmm5
	mulsd %xmm3, %xmm5
	movapd %xmm5, %xmm6
	addsd %xmm4, %xmm6
	ucomisd .L5(%rip), %xmm6
	ja .L2
	cmpl $0x3e8, %eax
	jg .L3
	mulsd %xmm2, %xmm3
	subsd %xmm5, %xmm4
	movapd %xmm4, %xmm2
	addsd %xmm1, %xmm2
	addsd %xmm3, %xmm3
	addsd %xmm0, %xmm3
	jmp .L1
.L2:
	retq
.L3:
	xorl %eax, %eax
	retq
.rodata
.L4:
	.db 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, 0x3f
.L5:
	.db 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x40

PHP JIT based on IR

A new experimental JIT for PHP based on IR is developed at php-ir branch. See README-IR.md.

References

  1. C. Click, M. Paleczny. “A Simple Graph-Based Intermediate Representation” In ACM SIGPLAN Workshop on Intermediate Representations (IR '95), pages 35-49, Jan. 1995.
  2. C. Click. “Global Code Motion Global Value Numbering” In ACM SIGPLAN Notices, Volume 30, Issue 6, pp 246257, June 1995
  3. M. Pall. “LuaJIT 2.0 intellectual property disclosure and research opportunities” November 2009 http://lua-users.org/lists/lua-l/2009-11/msg00089.html
  4. M. N. Wegman and F. K. Zadeck. "Constant propagation with conditional branches" ACM Transactions on Programming Languages and Systems, 13(2):181-210, April 1991
  5. C. Wimmer. “Optimized Interval Splitting in a Linear Scan Register Allocator” In VEE '05: Proceedings of the 1st ACM/USENIX international conference on Virtual execution environments, pages 132141, June 2005
  6. C. Wimmer and M. Franz. “Linear Scan Register Allocation on SSA Form” In CGO '10: Proceedings of the 8-th annual IEEE/ACM international symposium on Code generation and optimization, pages 170179, April 2010