1
0
mirror of https://github.com/danog/libtgvoip.git synced 2024-12-12 09:09:38 +01:00
libtgvoip/webrtc_dsp/modules/audio_processing/aec3/render_signal_analyzer.cc

133 lines
4.6 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
#include <math.h>
#include <algorithm>
#include <utility>
#include <vector>
#include "api/array_view.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr size_t kCounterThreshold = 5;
// Identifies local bands with narrow characteristics.
void IdentifySmallNarrowBandRegions(
const RenderBuffer& render_buffer,
const absl::optional<size_t>& delay_partitions,
std::array<size_t, kFftLengthBy2 - 1>* narrow_band_counters) {
if (!delay_partitions) {
narrow_band_counters->fill(0);
return;
}
rtc::ArrayView<const float> X2 = render_buffer.Spectrum(*delay_partitions);
RTC_DCHECK_EQ(kFftLengthBy2Plus1, X2.size());
for (size_t k = 1; k < (X2.size() - 1); ++k) {
(*narrow_band_counters)[k - 1] = X2[k] > 3 * std::max(X2[k - 1], X2[k + 1])
? (*narrow_band_counters)[k - 1] + 1
: 0;
}
}
// Identifies whether the signal has a single strong narrow-band component.
void IdentifyStrongNarrowBandComponent(const RenderBuffer& render_buffer,
int strong_peak_freeze_duration,
absl::optional<int>* narrow_peak_band,
size_t* narrow_peak_counter) {
const auto X2_latest = render_buffer.Spectrum(0);
// Identify the spectral peak.
const int peak_bin = static_cast<int>(
std::max_element(X2_latest.begin(), X2_latest.end()) - X2_latest.begin());
// Compute the level around the peak.
float non_peak_power = 0.f;
for (int k = std::max(0, peak_bin - 14); k < peak_bin - 4; ++k) {
non_peak_power = std::max(X2_latest[k], non_peak_power);
}
for (int k = peak_bin + 5;
k < std::min(peak_bin + 15, static_cast<int>(kFftLengthBy2Plus1)); ++k) {
non_peak_power = std::max(X2_latest[k], non_peak_power);
}
// Assess the render signal strength.
const std::vector<std::vector<float>>& x_latest = render_buffer.Block(0);
auto result0 = std::minmax_element(x_latest[0].begin(), x_latest[0].end());
float max_abs = std::max(fabs(*result0.first), fabs(*result0.second));
if (x_latest.size() > 1) {
const auto result1 =
std::minmax_element(x_latest[1].begin(), x_latest[1].end());
max_abs =
std::max(max_abs, static_cast<float>(std::max(fabs(*result1.first),
fabs(*result1.second))));
}
// Detect whether the spectal peak has as strong narrowband nature.
if (peak_bin > 0 && max_abs > 100 &&
X2_latest[peak_bin] > 100 * non_peak_power) {
*narrow_peak_band = peak_bin;
*narrow_peak_counter = 0;
} else {
if (*narrow_peak_band &&
++(*narrow_peak_counter) >
static_cast<size_t>(strong_peak_freeze_duration)) {
*narrow_peak_band = absl::nullopt;
}
}
}
} // namespace
RenderSignalAnalyzer::RenderSignalAnalyzer(const EchoCanceller3Config& config)
: strong_peak_freeze_duration_(config.filter.main.length_blocks) {
narrow_band_counters_.fill(0);
}
RenderSignalAnalyzer::~RenderSignalAnalyzer() = default;
void RenderSignalAnalyzer::Update(
const RenderBuffer& render_buffer,
const absl::optional<size_t>& delay_partitions) {
// Identify bands of narrow nature.
IdentifySmallNarrowBandRegions(render_buffer, delay_partitions,
&narrow_band_counters_);
// Identify the presence of a strong narrow band.
IdentifyStrongNarrowBandComponent(render_buffer, strong_peak_freeze_duration_,
&narrow_peak_band_, &narrow_peak_counter_);
}
void RenderSignalAnalyzer::MaskRegionsAroundNarrowBands(
std::array<float, kFftLengthBy2Plus1>* v) const {
RTC_DCHECK(v);
// Set v to zero around narrow band signal regions.
if (narrow_band_counters_[0] > kCounterThreshold) {
(*v)[1] = (*v)[0] = 0.f;
}
for (size_t k = 2; k < kFftLengthBy2 - 1; ++k) {
if (narrow_band_counters_[k - 1] > kCounterThreshold) {
(*v)[k - 2] = (*v)[k - 1] = (*v)[k] = (*v)[k + 1] = (*v)[k + 2] = 0.f;
}
}
if (narrow_band_counters_[kFftLengthBy2 - 2] > kCounterThreshold) {
(*v)[kFftLengthBy2] = (*v)[kFftLengthBy2 - 1] = 0.f;
}
}
} // namespace webrtc