mirror of
https://github.com/danog/libtgvoip.git
synced 2025-01-09 22:28:30 +01:00
118 lines
4.4 KiB
C
118 lines
4.4 KiB
C
|
/*
|
||
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#ifndef MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_
|
||
|
#define MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_
|
||
|
|
||
|
#include <stddef.h>
|
||
|
#include <sys/types.h>
|
||
|
#include <array>
|
||
|
|
||
|
#include "api/array_view.h"
|
||
|
#include "modules/audio_processing/agc2/rnn_vad/common.h"
|
||
|
|
||
|
namespace webrtc {
|
||
|
namespace rnn_vad {
|
||
|
|
||
|
// Maximum number of units for a fully-connected layer. This value is used to
|
||
|
// over-allocate space for fully-connected layers output vectors (implemented as
|
||
|
// std::array). The value should equal the number of units of the largest
|
||
|
// fully-connected layer.
|
||
|
constexpr size_t kFullyConnectedLayersMaxUnits = 24;
|
||
|
|
||
|
// Maximum number of units for a recurrent layer. This value is used to
|
||
|
// over-allocate space for recurrent layers state vectors (implemented as
|
||
|
// std::array). The value should equal the number of units of the largest
|
||
|
// recurrent layer.
|
||
|
constexpr size_t kRecurrentLayersMaxUnits = 24;
|
||
|
|
||
|
// Fully-connected layer.
|
||
|
class FullyConnectedLayer {
|
||
|
public:
|
||
|
FullyConnectedLayer(const size_t input_size,
|
||
|
const size_t output_size,
|
||
|
const rtc::ArrayView<const int8_t> bias,
|
||
|
const rtc::ArrayView<const int8_t> weights,
|
||
|
float (*const activation_function)(float));
|
||
|
FullyConnectedLayer(const FullyConnectedLayer&) = delete;
|
||
|
FullyConnectedLayer& operator=(const FullyConnectedLayer&) = delete;
|
||
|
~FullyConnectedLayer();
|
||
|
size_t input_size() const { return input_size_; }
|
||
|
size_t output_size() const { return output_size_; }
|
||
|
rtc::ArrayView<const float> GetOutput() const;
|
||
|
// Computes the fully-connected layer output.
|
||
|
void ComputeOutput(rtc::ArrayView<const float> input);
|
||
|
|
||
|
private:
|
||
|
const size_t input_size_;
|
||
|
const size_t output_size_;
|
||
|
const rtc::ArrayView<const int8_t> bias_;
|
||
|
const rtc::ArrayView<const int8_t> weights_;
|
||
|
float (*const activation_function_)(float);
|
||
|
// The output vector of a recurrent layer has length equal to |output_size_|.
|
||
|
// However, for efficiency, over-allocation is used.
|
||
|
std::array<float, kFullyConnectedLayersMaxUnits> output_;
|
||
|
};
|
||
|
|
||
|
// Recurrent layer with gated recurrent units (GRUs).
|
||
|
class GatedRecurrentLayer {
|
||
|
public:
|
||
|
GatedRecurrentLayer(const size_t input_size,
|
||
|
const size_t output_size,
|
||
|
const rtc::ArrayView<const int8_t> bias,
|
||
|
const rtc::ArrayView<const int8_t> weights,
|
||
|
const rtc::ArrayView<const int8_t> recurrent_weights,
|
||
|
float (*const activation_function)(float));
|
||
|
GatedRecurrentLayer(const GatedRecurrentLayer&) = delete;
|
||
|
GatedRecurrentLayer& operator=(const GatedRecurrentLayer&) = delete;
|
||
|
~GatedRecurrentLayer();
|
||
|
size_t input_size() const { return input_size_; }
|
||
|
size_t output_size() const { return output_size_; }
|
||
|
rtc::ArrayView<const float> GetOutput() const;
|
||
|
void Reset();
|
||
|
// Computes the recurrent layer output and updates the status.
|
||
|
void ComputeOutput(rtc::ArrayView<const float> input);
|
||
|
|
||
|
private:
|
||
|
const size_t input_size_;
|
||
|
const size_t output_size_;
|
||
|
const rtc::ArrayView<const int8_t> bias_;
|
||
|
const rtc::ArrayView<const int8_t> weights_;
|
||
|
const rtc::ArrayView<const int8_t> recurrent_weights_;
|
||
|
float (*const activation_function_)(float);
|
||
|
// The state vector of a recurrent layer has length equal to |output_size_|.
|
||
|
// However, to avoid dynamic allocation, over-allocation is used.
|
||
|
std::array<float, kRecurrentLayersMaxUnits> state_;
|
||
|
};
|
||
|
|
||
|
// Recurrent network based VAD.
|
||
|
class RnnBasedVad {
|
||
|
public:
|
||
|
RnnBasedVad();
|
||
|
RnnBasedVad(const RnnBasedVad&) = delete;
|
||
|
RnnBasedVad& operator=(const RnnBasedVad&) = delete;
|
||
|
~RnnBasedVad();
|
||
|
void Reset();
|
||
|
// Compute and returns the probability of voice (range: [0.0, 1.0]).
|
||
|
float ComputeVadProbability(
|
||
|
rtc::ArrayView<const float, kFeatureVectorSize> feature_vector,
|
||
|
bool is_silence);
|
||
|
|
||
|
private:
|
||
|
FullyConnectedLayer input_layer_;
|
||
|
GatedRecurrentLayer hidden_layer_;
|
||
|
FullyConnectedLayer output_layer_;
|
||
|
};
|
||
|
|
||
|
} // namespace rnn_vad
|
||
|
} // namespace webrtc
|
||
|
|
||
|
#endif // MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_
|