1
0
mirror of https://github.com/danog/libtgvoip.git synced 2025-01-09 22:28:30 +01:00
libtgvoip/webrtc_dsp/modules/audio_processing/agc2/rnn_vad/rnn.h

118 lines
4.4 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_
#define MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_
#include <stddef.h>
#include <sys/types.h>
#include <array>
#include "api/array_view.h"
#include "modules/audio_processing/agc2/rnn_vad/common.h"
namespace webrtc {
namespace rnn_vad {
// Maximum number of units for a fully-connected layer. This value is used to
// over-allocate space for fully-connected layers output vectors (implemented as
// std::array). The value should equal the number of units of the largest
// fully-connected layer.
constexpr size_t kFullyConnectedLayersMaxUnits = 24;
// Maximum number of units for a recurrent layer. This value is used to
// over-allocate space for recurrent layers state vectors (implemented as
// std::array). The value should equal the number of units of the largest
// recurrent layer.
constexpr size_t kRecurrentLayersMaxUnits = 24;
// Fully-connected layer.
class FullyConnectedLayer {
public:
FullyConnectedLayer(const size_t input_size,
const size_t output_size,
const rtc::ArrayView<const int8_t> bias,
const rtc::ArrayView<const int8_t> weights,
float (*const activation_function)(float));
FullyConnectedLayer(const FullyConnectedLayer&) = delete;
FullyConnectedLayer& operator=(const FullyConnectedLayer&) = delete;
~FullyConnectedLayer();
size_t input_size() const { return input_size_; }
size_t output_size() const { return output_size_; }
rtc::ArrayView<const float> GetOutput() const;
// Computes the fully-connected layer output.
void ComputeOutput(rtc::ArrayView<const float> input);
private:
const size_t input_size_;
const size_t output_size_;
const rtc::ArrayView<const int8_t> bias_;
const rtc::ArrayView<const int8_t> weights_;
float (*const activation_function_)(float);
// The output vector of a recurrent layer has length equal to |output_size_|.
// However, for efficiency, over-allocation is used.
std::array<float, kFullyConnectedLayersMaxUnits> output_;
};
// Recurrent layer with gated recurrent units (GRUs).
class GatedRecurrentLayer {
public:
GatedRecurrentLayer(const size_t input_size,
const size_t output_size,
const rtc::ArrayView<const int8_t> bias,
const rtc::ArrayView<const int8_t> weights,
const rtc::ArrayView<const int8_t> recurrent_weights,
float (*const activation_function)(float));
GatedRecurrentLayer(const GatedRecurrentLayer&) = delete;
GatedRecurrentLayer& operator=(const GatedRecurrentLayer&) = delete;
~GatedRecurrentLayer();
size_t input_size() const { return input_size_; }
size_t output_size() const { return output_size_; }
rtc::ArrayView<const float> GetOutput() const;
void Reset();
// Computes the recurrent layer output and updates the status.
void ComputeOutput(rtc::ArrayView<const float> input);
private:
const size_t input_size_;
const size_t output_size_;
const rtc::ArrayView<const int8_t> bias_;
const rtc::ArrayView<const int8_t> weights_;
const rtc::ArrayView<const int8_t> recurrent_weights_;
float (*const activation_function_)(float);
// The state vector of a recurrent layer has length equal to |output_size_|.
// However, to avoid dynamic allocation, over-allocation is used.
std::array<float, kRecurrentLayersMaxUnits> state_;
};
// Recurrent network based VAD.
class RnnBasedVad {
public:
RnnBasedVad();
RnnBasedVad(const RnnBasedVad&) = delete;
RnnBasedVad& operator=(const RnnBasedVad&) = delete;
~RnnBasedVad();
void Reset();
// Compute and returns the probability of voice (range: [0.0, 1.0]).
float ComputeVadProbability(
rtc::ArrayView<const float, kFeatureVectorSize> feature_vector,
bool is_silence);
private:
FullyConnectedLayer input_layer_;
GatedRecurrentLayer hidden_layer_;
FullyConnectedLayer output_layer_;
};
} // namespace rnn_vad
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_