mirror of
https://github.com/danog/libtgvoip.git
synced 2025-01-09 14:18:24 +01:00
5caaaafa42
I'm now using the entire audio processing module from WebRTC as opposed to individual DSP algorithms pulled from there before. Seems to work better this way.
118 lines
4.4 KiB
C++
118 lines
4.4 KiB
C++
/*
|
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#ifndef MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_
|
|
#define MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_
|
|
|
|
#include <stddef.h>
|
|
#include <sys/types.h>
|
|
#include <array>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/agc2/rnn_vad/common.h"
|
|
|
|
namespace webrtc {
|
|
namespace rnn_vad {
|
|
|
|
// Maximum number of units for a fully-connected layer. This value is used to
|
|
// over-allocate space for fully-connected layers output vectors (implemented as
|
|
// std::array). The value should equal the number of units of the largest
|
|
// fully-connected layer.
|
|
constexpr size_t kFullyConnectedLayersMaxUnits = 24;
|
|
|
|
// Maximum number of units for a recurrent layer. This value is used to
|
|
// over-allocate space for recurrent layers state vectors (implemented as
|
|
// std::array). The value should equal the number of units of the largest
|
|
// recurrent layer.
|
|
constexpr size_t kRecurrentLayersMaxUnits = 24;
|
|
|
|
// Fully-connected layer.
|
|
class FullyConnectedLayer {
|
|
public:
|
|
FullyConnectedLayer(const size_t input_size,
|
|
const size_t output_size,
|
|
const rtc::ArrayView<const int8_t> bias,
|
|
const rtc::ArrayView<const int8_t> weights,
|
|
float (*const activation_function)(float));
|
|
FullyConnectedLayer(const FullyConnectedLayer&) = delete;
|
|
FullyConnectedLayer& operator=(const FullyConnectedLayer&) = delete;
|
|
~FullyConnectedLayer();
|
|
size_t input_size() const { return input_size_; }
|
|
size_t output_size() const { return output_size_; }
|
|
rtc::ArrayView<const float> GetOutput() const;
|
|
// Computes the fully-connected layer output.
|
|
void ComputeOutput(rtc::ArrayView<const float> input);
|
|
|
|
private:
|
|
const size_t input_size_;
|
|
const size_t output_size_;
|
|
const rtc::ArrayView<const int8_t> bias_;
|
|
const rtc::ArrayView<const int8_t> weights_;
|
|
float (*const activation_function_)(float);
|
|
// The output vector of a recurrent layer has length equal to |output_size_|.
|
|
// However, for efficiency, over-allocation is used.
|
|
std::array<float, kFullyConnectedLayersMaxUnits> output_;
|
|
};
|
|
|
|
// Recurrent layer with gated recurrent units (GRUs).
|
|
class GatedRecurrentLayer {
|
|
public:
|
|
GatedRecurrentLayer(const size_t input_size,
|
|
const size_t output_size,
|
|
const rtc::ArrayView<const int8_t> bias,
|
|
const rtc::ArrayView<const int8_t> weights,
|
|
const rtc::ArrayView<const int8_t> recurrent_weights,
|
|
float (*const activation_function)(float));
|
|
GatedRecurrentLayer(const GatedRecurrentLayer&) = delete;
|
|
GatedRecurrentLayer& operator=(const GatedRecurrentLayer&) = delete;
|
|
~GatedRecurrentLayer();
|
|
size_t input_size() const { return input_size_; }
|
|
size_t output_size() const { return output_size_; }
|
|
rtc::ArrayView<const float> GetOutput() const;
|
|
void Reset();
|
|
// Computes the recurrent layer output and updates the status.
|
|
void ComputeOutput(rtc::ArrayView<const float> input);
|
|
|
|
private:
|
|
const size_t input_size_;
|
|
const size_t output_size_;
|
|
const rtc::ArrayView<const int8_t> bias_;
|
|
const rtc::ArrayView<const int8_t> weights_;
|
|
const rtc::ArrayView<const int8_t> recurrent_weights_;
|
|
float (*const activation_function_)(float);
|
|
// The state vector of a recurrent layer has length equal to |output_size_|.
|
|
// However, to avoid dynamic allocation, over-allocation is used.
|
|
std::array<float, kRecurrentLayersMaxUnits> state_;
|
|
};
|
|
|
|
// Recurrent network based VAD.
|
|
class RnnBasedVad {
|
|
public:
|
|
RnnBasedVad();
|
|
RnnBasedVad(const RnnBasedVad&) = delete;
|
|
RnnBasedVad& operator=(const RnnBasedVad&) = delete;
|
|
~RnnBasedVad();
|
|
void Reset();
|
|
// Compute and returns the probability of voice (range: [0.0, 1.0]).
|
|
float ComputeVadProbability(
|
|
rtc::ArrayView<const float, kFeatureVectorSize> feature_vector,
|
|
bool is_silence);
|
|
|
|
private:
|
|
FullyConnectedLayer input_layer_;
|
|
GatedRecurrentLayer hidden_layer_;
|
|
FullyConnectedLayer output_layer_;
|
|
};
|
|
|
|
} // namespace rnn_vad
|
|
} // namespace webrtc
|
|
|
|
#endif // MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_
|